L. G. Queiroz, B. Rani-Borges, C. Prado, Beatriz Rocha de Moraes, R. A. Ando, T. Paiva, Marcelo Pompêo
{"title":"Realistic environmental exposure to secondary PET microplastics induces biochemical responses in freshwater amphipod Hyalella azteca","authors":"L. G. Queiroz, B. Rani-Borges, C. Prado, Beatriz Rocha de Moraes, R. A. Ando, T. Paiva, Marcelo Pompêo","doi":"10.1080/02757540.2022.2162046","DOIUrl":null,"url":null,"abstract":"ABSTRACT Freshwater environments are especially susceptible to microplastic contamination due to their proximity to urbanised and industrial areas. Also, there is a lack of information about the effects of this pollutant on freshwaters making it difficult the conservation of these environments. Benthic species, such as the freshwater amphipod Hyalella azteca, have been superficially studied so far for evaluation of microplastic pollution. In the present study, we analyzed whether polyethylene terephthalate (PET) microplastics could lead to reduced survival of H. azteca or changes in biochemical markers (SOD, CAT, MDA, and GST) at environmentally relevant concentrations (60 and 600 particles) after 7 d of exposure. The results showed that there was no significant mortality at any of the concentrations tested. The enzyme CAT showed no variation compared to the control group at any of the concentrations. SOD, MDA, and GST were statistically different (p < 0.05). Our study demonstrated that PET MP did not affect the survival of H. azteca at environmentally relevant concentrations. However, changes in biomarkers of oxidative stress may be detected at low level of exposure (60 particles). Although survival is not affected, the macrobenthic invertebrate community may be under threat in environments where there is PET microplastic pollution.","PeriodicalId":9960,"journal":{"name":"Chemistry and Ecology","volume":"39 1","pages":"288 - 301"},"PeriodicalIF":1.3000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02757540.2022.2162046","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Freshwater environments are especially susceptible to microplastic contamination due to their proximity to urbanised and industrial areas. Also, there is a lack of information about the effects of this pollutant on freshwaters making it difficult the conservation of these environments. Benthic species, such as the freshwater amphipod Hyalella azteca, have been superficially studied so far for evaluation of microplastic pollution. In the present study, we analyzed whether polyethylene terephthalate (PET) microplastics could lead to reduced survival of H. azteca or changes in biochemical markers (SOD, CAT, MDA, and GST) at environmentally relevant concentrations (60 and 600 particles) after 7 d of exposure. The results showed that there was no significant mortality at any of the concentrations tested. The enzyme CAT showed no variation compared to the control group at any of the concentrations. SOD, MDA, and GST were statistically different (p < 0.05). Our study demonstrated that PET MP did not affect the survival of H. azteca at environmentally relevant concentrations. However, changes in biomarkers of oxidative stress may be detected at low level of exposure (60 particles). Although survival is not affected, the macrobenthic invertebrate community may be under threat in environments where there is PET microplastic pollution.
期刊介绍:
Chemistry and Ecology publishes original articles, short notes and occasional reviews on the relationship between chemistry and ecological processes. This journal reflects how chemical form and state, as well as other basic properties, are critical in their influence on biological systems and that understanding of the routes and dynamics of the transfer of materials through atmospheric, terrestrial and aquatic systems, and the associated effects, calls for an integrated treatment. Chemistry and Ecology will help promote the ecological assessment of a changing chemical environment and in the development of a better understanding of ecological functions.