The gut-brain axis: interactions between microbiota and nervous systems

Q4 Biochemistry, Genetics and Molecular Biology Journal of Cellular Neuroscience and Oxidative Stress Pub Date : 2018-08-18 DOI:10.37212/JCNOS.610103
O. Akpınar
{"title":"The gut-brain axis: interactions between microbiota and nervous systems","authors":"O. Akpınar","doi":"10.37212/JCNOS.610103","DOIUrl":null,"url":null,"abstract":"Humans coexist in a mutualistic relationship with  the intestinal microbiota, a complex microbial  ecosystem that resides largely in the distal bowel. The  lower gastrointestinal tract contains almost 100 trillion  microorganisms, most of which are bacteria. More than  1,000 bacterial species have been identified in this  microbiota. The intestinal microbiota lives in a  symbiotic relationship with the host. A bidirectional  neurohumoral communication system, known as the  gut–brain axis, integrates the host gut and brain  activities (Mayer et al. 2015). Communication between  the brain and gut occurs along a network of pathways  collectively termed the brain-gut axis. The brain-gut  axis encompass the CNS, ENS, sympathetic and  parasympathetic branches of the autonomic nervous  system, neuroendocrine and neuroimmune pathways,  and the gut microbiota (Colins et al. 2012).  The gut microbiota can signal to the brain via a  number of pathways which include: regulating immune  activity and the production of roinflammatory  cytokines that can either stimulate the HPA axis to  produce CRH, ACTH and cortisol, or directly impact on  CNS immune activity; through the production of SCFAs  such as propionate, butyrate, and acetate; the production  of neurotransmitters which may enter circulation and  cross the blood brain barrier; by modulating tryptophan  metabolism and downstream metabolites, serotonin,  kynurenic acid and quinolinic acid. Neuronal and spinal  pathways, particularly afferent signaling pathways of  the vagus nerve, are critical in mediating the effect of  the gut microbiota on brain function and behavior.  Microbial produced SCFAs and indole also impact on  EC cells of the enteric nervous system (Romijn et al.  2008; Cani et al. 2013).  The purpose of this presentation was to summarize  our current knowledge regarding the role of microbiota  in bottom-up pathways of communication in the gutbrain  axis.","PeriodicalId":37782,"journal":{"name":"Journal of Cellular Neuroscience and Oxidative Stress","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Neuroscience and Oxidative Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37212/JCNOS.610103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

Abstract

Humans coexist in a mutualistic relationship with  the intestinal microbiota, a complex microbial  ecosystem that resides largely in the distal bowel. The  lower gastrointestinal tract contains almost 100 trillion  microorganisms, most of which are bacteria. More than  1,000 bacterial species have been identified in this  microbiota. The intestinal microbiota lives in a  symbiotic relationship with the host. A bidirectional  neurohumoral communication system, known as the  gut–brain axis, integrates the host gut and brain  activities (Mayer et al. 2015). Communication between  the brain and gut occurs along a network of pathways  collectively termed the brain-gut axis. The brain-gut  axis encompass the CNS, ENS, sympathetic and  parasympathetic branches of the autonomic nervous  system, neuroendocrine and neuroimmune pathways,  and the gut microbiota (Colins et al. 2012).  The gut microbiota can signal to the brain via a  number of pathways which include: regulating immune  activity and the production of roinflammatory  cytokines that can either stimulate the HPA axis to  produce CRH, ACTH and cortisol, or directly impact on  CNS immune activity; through the production of SCFAs  such as propionate, butyrate, and acetate; the production  of neurotransmitters which may enter circulation and  cross the blood brain barrier; by modulating tryptophan  metabolism and downstream metabolites, serotonin,  kynurenic acid and quinolinic acid. Neuronal and spinal  pathways, particularly afferent signaling pathways of  the vagus nerve, are critical in mediating the effect of  the gut microbiota on brain function and behavior.  Microbial produced SCFAs and indole also impact on  EC cells of the enteric nervous system (Romijn et al.  2008; Cani et al. 2013).  The purpose of this presentation was to summarize  our current knowledge regarding the role of microbiota  in bottom-up pathways of communication in the gutbrain  axis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肠脑轴:微生物群和神经系统之间的相互作用
人类与肠道微生物群共存,肠道微生物群是一个复杂的微生物生态系统,主要位于远端肠道。下胃肠道含有近100万亿个微生物,其中大部分是细菌。在这个微生物群中已经发现了1000多种细菌。肠道菌群与宿主是一种共生关系。被称为肠脑轴的双向神经体液通讯系统整合了宿主肠道和大脑活动(Mayer et al. 2015)。大脑和肠道之间的交流发生在一个被统称为脑肠轴的通路网络上。脑肠轴包括中枢神经系统、ENS、自主神经系统的交感神经和副交感神经分支、神经内分泌和神经免疫途径以及肠道微生物群(collins et al. 2012)。肠道微生物群可以通过多种途径向大脑发出信号,其中包括:调节免疫活性和炎症细胞因子的产生,这些细胞因子可以刺激HPA轴产生CRH, ACTH和皮质醇,或直接影响CNS免疫活性;通过生产丙酸、丁酸和醋酸酯等短链脂肪酸;神经递质的产生可能进入血液循环并穿过血脑屏障;通过调节色氨酸代谢和下游代谢物,血清素,犬尿酸和喹啉酸。神经元和脊髓通路,特别是迷走神经的传入信号通路,在调节肠道微生物群对脑功能和行为的影响方面至关重要。微生物产生的短链脂肪酸和吲哚也会影响肠神经系统的EC细胞(Romijn et al. 2008;Cani et al. 2013)。本报告的目的是总结我们目前关于微生物群在肠脑轴自下而上的沟通途径中的作用的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cellular Neuroscience and Oxidative Stress
Journal of Cellular Neuroscience and Oxidative Stress Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.10
自引率
0.00%
发文量
8
期刊介绍: Journal of Cellular Neuroscience and Oxidative Stress isan online journal that publishes original research articles, reviews and short reviews on themolecular basisofbiophysical,physiological and pharmacological processes thatregulate cellular function, and the control or alteration of these processesby theaction of receptors, neurotransmitters, second messengers, cation, anions,drugsor disease. Areas of particular interest are four topics. They are; 1. Ion Channels (Na+-K+Channels, Cl– channels, Ca2+channels, ADP-Ribose and metabolism of NAD+,Patch-Clamp applications) 2. Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, biophysics, biochemistry and physiology of free oxygen radicals) 3. Interaction Between Oxidative Stress and Ion Channels in Neuroscience (Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD+ on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels in neurodegenerative diseases such Parkinson’s and Alzheimer’s diseases) 4. Gene and Oxidative Stress (Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)
期刊最新文献
Circadian rhythms of antioxidant enzymes activity, clock, and inflammation factors are disrupted in the prefrontal cortex of aged rats. Potential targets for therapeutic strategies for a healthy aging. Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice Protective effect of N-acetylcysteine on hippocampal ferroptosis in an experimental obesity model Regulatory role of phospholipase A2 inhibitor in oxidative stress and inflammation induced by an experimental mouse migraine model Fasting alters p75NTR and AgRP mRNA expression in rat olfactory bulb and hippocampus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1