{"title":"Associated tolerance optimization approach using manufacturing difficulty coefficients and genetic algorithm","authors":"Maroua Ghali, Sami Elghali, N. Aifaoui","doi":"10.1108/aa-02-2022-0024","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to establish a tolerance optimization method based on manufacturing difficulty computation using the genetic algorithm (GA) method. This proposal is among the authors’ perspectives of accomplished previous research work to cooperative optimal tolerance allocation approach for concurrent engineering area.\n\n\nDesign/methodology/approach\nThis study introduces the proposed GA modeling. The objective function of the proposed GA is to minimize total cost constrained by the equation of functional requirements tolerances considering difficulty coefficients. The manufacturing difficulty computation is based on tools for the study and analysis of reliability of the design or the process, as the failure mode, effects and criticality analysis (FMECA) and Ishikawa diagram.\n\n\nFindings\nThe proposed approach, based on difficulty coefficient computation and GA optimization method [genetic algorithm optimization using difficulty coefficient computation (GADCC)], has been applied to mechanical assembly taken from the literature and compared to previous methods regarding tolerance values and computed total cost. The total cost is the summation of manufacturing cost and quality loss. The proposed approach is economic and efficient that leads to facilitate the manufacturing of difficult dimensions by increasing their tolerances and reducing the rate of defect parts of the assembly.\n\n\nOriginality/value\nThe originality of this new optimal tolerance allocation method is to make a marriage between GA and manufacturing difficulty. The computation of part dimensions difficulty is based on incorporating FMECA tool and Ishikawa diagram This comparative study highlights the benefits of the proposed GADCC optimization method. The results lead to obtain optimal tolerances that minimize the total cost and respect the functional, quality and manufacturing requirements.\n","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/aa-02-2022-0024","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this paper is to establish a tolerance optimization method based on manufacturing difficulty computation using the genetic algorithm (GA) method. This proposal is among the authors’ perspectives of accomplished previous research work to cooperative optimal tolerance allocation approach for concurrent engineering area.
Design/methodology/approach
This study introduces the proposed GA modeling. The objective function of the proposed GA is to minimize total cost constrained by the equation of functional requirements tolerances considering difficulty coefficients. The manufacturing difficulty computation is based on tools for the study and analysis of reliability of the design or the process, as the failure mode, effects and criticality analysis (FMECA) and Ishikawa diagram.
Findings
The proposed approach, based on difficulty coefficient computation and GA optimization method [genetic algorithm optimization using difficulty coefficient computation (GADCC)], has been applied to mechanical assembly taken from the literature and compared to previous methods regarding tolerance values and computed total cost. The total cost is the summation of manufacturing cost and quality loss. The proposed approach is economic and efficient that leads to facilitate the manufacturing of difficult dimensions by increasing their tolerances and reducing the rate of defect parts of the assembly.
Originality/value
The originality of this new optimal tolerance allocation method is to make a marriage between GA and manufacturing difficulty. The computation of part dimensions difficulty is based on incorporating FMECA tool and Ishikawa diagram This comparative study highlights the benefits of the proposed GADCC optimization method. The results lead to obtain optimal tolerances that minimize the total cost and respect the functional, quality and manufacturing requirements.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.