Central limit theorem of linear spectral statistics of high-dimensional sample correlation matrices

IF 1.7 2区 数学 Q2 STATISTICS & PROBABILITY Bernoulli Pub Date : 2023-05-01 DOI:10.3150/22-bej1487
Yanqing Yin, Shu-rong Zheng, Tingting Zou
{"title":"Central limit theorem of linear spectral statistics of high-dimensional sample correlation matrices","authors":"Yanqing Yin, Shu-rong Zheng, Tingting Zou","doi":"10.3150/22-bej1487","DOIUrl":null,"url":null,"abstract":"A high-dimensional sample correlation matrix is an important random matrix in multivariate statistical analysis. Its central limit theory is one of the main theoretical bases for making statistical inferences on high-dimensional correlation matrices. Under the high-dimensional framework in which the data dimension tends to infinity proportionally with the sample size, we establish the central limit theorems (CLT) for the linear spectral statistics (LSS) of sample correlation matrices in two settings: (1) the population follows an independent component structure; (2) the population follows an elliptical structure, including some heavy-tailed distributions. The results show that the CLTs of the LSS of the sample correlation matrices are very different in the two settings. In particular, even if the population correlation matrix is an identity matrix, the CLTs are different in the two settings. An application of our two established CLTs is provided.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1487","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

A high-dimensional sample correlation matrix is an important random matrix in multivariate statistical analysis. Its central limit theory is one of the main theoretical bases for making statistical inferences on high-dimensional correlation matrices. Under the high-dimensional framework in which the data dimension tends to infinity proportionally with the sample size, we establish the central limit theorems (CLT) for the linear spectral statistics (LSS) of sample correlation matrices in two settings: (1) the population follows an independent component structure; (2) the population follows an elliptical structure, including some heavy-tailed distributions. The results show that the CLTs of the LSS of the sample correlation matrices are very different in the two settings. In particular, even if the population correlation matrix is an identity matrix, the CLTs are different in the two settings. An application of our two established CLTs is provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维样本相关矩阵线性谱统计的中心极限定理
高维样本相关矩阵是多元统计分析中一种重要的随机矩阵。它的中心极限理论是对高维相关矩阵进行统计推断的主要理论依据之一。在数据维数与样本量成比例趋于无穷大的高维框架下,我们建立了两种情况下样本相关矩阵线性谱统计量(LSS)的中心极限定理(CLT):(1)总体服从独立成分结构;(2)总体呈椭圆形分布,包括一些重尾分布。结果表明,在两种情况下,样本相关矩阵的LSS的clt有很大差异。特别是,即使人口相关矩阵是单位矩阵,两种设置中的clt也是不同的。本文提供了两个已建立的clt的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bernoulli
Bernoulli 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
116
审稿时长
6-12 weeks
期刊介绍: BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work. BERNOULLI will publish: Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed. Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research: Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments. Scholarly written papers on some historical significant aspect of statistics and probability.
期刊最新文献
Semiparametric regression of panel count data with informative terminal event. Bootstrap inference in functional linear regression models with scalar response Cramér type moderate deviations for the Grenander estimator near the boundaries of the support Joint density of the stable process and its supremum: Regularity and upper bounds On the mean perimeter density of inhomogeneous random closed sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1