Modified Jaccard index analysis and adaptive feature selection for location fingerprinting with limited computational complexity

IF 1.4 Q4 TELECOMMUNICATIONS Journal of Location Based Services Pub Date : 2019-01-10 DOI:10.1080/17489725.2019.1577505
Caifa Zhou, A. Wieser
{"title":"Modified Jaccard index analysis and adaptive feature selection for location fingerprinting with limited computational complexity","authors":"Caifa Zhou, A. Wieser","doi":"10.1080/17489725.2019.1577505","DOIUrl":null,"url":null,"abstract":"ABSTRACT We propose an approach for fingerprinting-based positioning which reduces the data requirements and computational complexity of the online positioning stage. It is based on a segmentation of the entire region of interest into subregions, identification of candidate subregions during the online-stage, and position estimation using a preselected subset of relevant features. The subregion selection uses a modified Jaccard which quantifies the similarity between the features observed by the user and those available within the reference fingerprint map. The adaptive feature selection is achieved using an adaptive forward-backward greedy search which determines a subset of features for each subregion, relevant with respect to a given fingerprinting-based positioning method. In an empirical study using signals of opportunity for fingerprinting the proposed subregion and feature selection reduce the processing time during the online-stage by a factor of about 10 while the positioning accuracy does not deteriorate significantly. In fact, in one of the two study cases, the 90th percentile of the circular error increased by 7.5% while in the other study case we even found a reduction of the corresponding circular error by 30%.","PeriodicalId":44932,"journal":{"name":"Journal of Location Based Services","volume":"13 1","pages":"128 - 157"},"PeriodicalIF":1.4000,"publicationDate":"2019-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17489725.2019.1577505","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Location Based Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17489725.2019.1577505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 8

Abstract

ABSTRACT We propose an approach for fingerprinting-based positioning which reduces the data requirements and computational complexity of the online positioning stage. It is based on a segmentation of the entire region of interest into subregions, identification of candidate subregions during the online-stage, and position estimation using a preselected subset of relevant features. The subregion selection uses a modified Jaccard which quantifies the similarity between the features observed by the user and those available within the reference fingerprint map. The adaptive feature selection is achieved using an adaptive forward-backward greedy search which determines a subset of features for each subregion, relevant with respect to a given fingerprinting-based positioning method. In an empirical study using signals of opportunity for fingerprinting the proposed subregion and feature selection reduce the processing time during the online-stage by a factor of about 10 while the positioning accuracy does not deteriorate significantly. In fact, in one of the two study cases, the 90th percentile of the circular error increased by 7.5% while in the other study case we even found a reduction of the corresponding circular error by 30%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限计算复杂度的位置指纹的改进Jaccard索引分析和自适应特征选择
提出了一种基于指纹的定位方法,降低了在线定位阶段的数据要求和计算复杂度。它基于将整个感兴趣的区域分割成子区域,在在线阶段识别候选子区域,并使用预先选择的相关特征子集进行位置估计。子区域选择使用改进的Jaccard,量化用户观察到的特征与参考指纹图谱中可用特征之间的相似性。自适应特征选择是使用自适应前向后贪婪搜索来实现的,该搜索确定每个子区域的特征子集,这些特征子集与给定的基于指纹的定位方法相关。在一项使用机会信号进行指纹识别的实证研究中,所提出的子区域和特征选择将在线阶段的处理时间减少了约10倍,而定位精度没有显著下降。事实上,在其中一个研究案例中,第90百分位的圆误差增加了7.5%,而在另一个研究案例中,我们甚至发现相应的圆误差减少了30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
8.70%
发文量
12
期刊介绍: The aim of this interdisciplinary and international journal is to provide a forum for the exchange of original ideas, techniques, designs and experiences in the rapidly growing field of location based services on networked mobile devices. It is intended to interest those who design, implement and deliver location based services in a wide range of contexts. Published research will span the field from location based computing and next-generation interfaces through telecom location architectures to business models and the social implications of this technology. The diversity of content echoes the extended nature of the chain of players required to make location based services a reality.
期刊最新文献
A location-based model using GIS with machine learning, and a human-based approach for demining a post-war region Analysing the effect of COVID-19 on the localness of visitors to Florida state parks and New York attractions using online reviews, tweets, and SafeGraph travel patterns The lower Saint Lawrence River region of Quebec, a hot spot for sheepfold-associated Q fever in Canada: Review of 258 cases. Narrating the route: route memorability in navigation instructions augmented with narrative–results from a user study Advances in location based services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1