Impact Angle Guidance Using Computationally Enhanced State-Dependent Differential Riccati-Equation Scheme

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Spacecraft and Rockets Pub Date : 2023-06-24 DOI:10.2514/1.a35624
Li-Gang Lin, Ruei-Syuan Wu, Chih-Ting Yeh, Ming Xin
{"title":"Impact Angle Guidance Using Computationally Enhanced State-Dependent Differential Riccati-Equation Scheme","authors":"Li-Gang Lin, Ruei-Syuan Wu, Chih-Ting Yeh, Ming Xin","doi":"10.2514/1.a35624","DOIUrl":null,"url":null,"abstract":"This study considers the latest three-dimensional impact angle guidance based on the state-dependent differential Riccati-equation (SDDRE) scheme, and it presents novel theories that efficiently guarantee the SDDRE’s applicability and largely reduce the computational burden. The unified applicability analysis completely categorizes the state space in terms of a simple equivalent condition, where all the inapplicable cases (leading to implementation breakdowns) are newly discovered and efficiently resolved. The condition almost removes the tedious online checking routine, which accounts for the dominant effort as endorsed by complexity analysis and practical validations. Moving forward to a general scope, we analyze the computational complexity of such an SDDRE controller: first subject to the MATLAB® framework and then the state-of-the-art enhancements, where the latter come from the best performance among extensive trials. Finally, numerical and hardware experiments (notably, microcontroller and field-programmable gate array) strengthen the confidence in the analytical findings, and they enrich the value in robustness and generality that benefit more guidance or control systems.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35624","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This study considers the latest three-dimensional impact angle guidance based on the state-dependent differential Riccati-equation (SDDRE) scheme, and it presents novel theories that efficiently guarantee the SDDRE’s applicability and largely reduce the computational burden. The unified applicability analysis completely categorizes the state space in terms of a simple equivalent condition, where all the inapplicable cases (leading to implementation breakdowns) are newly discovered and efficiently resolved. The condition almost removes the tedious online checking routine, which accounts for the dominant effort as endorsed by complexity analysis and practical validations. Moving forward to a general scope, we analyze the computational complexity of such an SDDRE controller: first subject to the MATLAB® framework and then the state-of-the-art enhancements, where the latter come from the best performance among extensive trials. Finally, numerical and hardware experiments (notably, microcontroller and field-programmable gate array) strengthen the confidence in the analytical findings, and they enrich the value in robustness and generality that benefit more guidance or control systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用计算增强的状态相关微分Riccati方程格式的冲击角制导
本文考虑了最新的基于状态相关的微分ricdre (state-dependent differential ricdre -equation, SDDRE)格式的三维冲击角制导,提出了新的理论,有效地保证了SDDRE的适用性,并大大减少了计算量。统一的适用性分析将状态空间完全分类为一个简单的等效条件,其中所有不适用的情况(导致实现崩溃)都是新发现并有效解决的。该条件几乎消除了繁琐的在线检查程序,这是复杂度分析和实际验证所支持的主要工作。向前推进到一般范围,我们分析这种sdre控制器的计算复杂性:首先服从MATLAB®框架,然后是最先进的增强,后者来自广泛试验中的最佳性能。最后,数值和硬件实验(特别是微控制器和现场可编程门阵列)增强了对分析结果的信心,并丰富了鲁棒性和通用性的价值,使更多的制导或控制系统受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Spacecraft and Rockets
Journal of Spacecraft and Rockets 工程技术-工程:宇航
CiteScore
3.60
自引率
18.80%
发文量
185
审稿时长
4.5 months
期刊介绍: This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
期刊最新文献
A systematic review of studies on resilience and risk and protective factors for health among refugee children in Nordic countries. Bayesian Reliability Analysis of the Enhanced Multimission Radioisotope Thermoelectric Generator Clarification: Seeded Hydrogen in Mars Transfer Vehicles Using Nuclear Thermal Propulsion Engines Clarification: Impacts of In-Situ Alternative Propellant on Nuclear Thermal Propulsion Mars Vehicle Architectures Concurrent Design Optimization of Tether-Net System and Actions for Reliable Space-Debris Capture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1