Circular cladding waveguides in Pr:YAG fabricated by femtosecond laser inscription: Raman, luminescence properties and guiding performance

IF 15.3 1区 物理与天体物理 Q1 OPTICS Opto-Electronic Advances Pub Date : 2021-02-28 DOI:10.29026/OEA.2021.200005
Quanxin Yang, Hongliang Liu, Shan He, B. Tian, Pengfei Wu
{"title":"Circular cladding waveguides in Pr:YAG fabricated by femtosecond laser inscription: Raman, luminescence properties and guiding performance","authors":"Quanxin Yang, Hongliang Liu, Shan He, B. Tian, Pengfei Wu","doi":"10.29026/OEA.2021.200005","DOIUrl":null,"url":null,"abstract":"We report on the fabrication of circular cladding waveguides with cross-section diameters of 60−120 μm in Pr:YAG crystal by applying femtosecond laser inscription. The fabricated waveguides present 2D guidance on the cross-section and fairly low propagation losses. Multiple high-order guiding modes are observed in waveguides with different diameters. Corresponding simulation results reveal the origin of a specific kind of guiding modes. Confocal micro-Raman (μ-Raman) experiments demonstrate the modification effects in femtosecond laser affected areas and ascertain the refractive index induced guiding mechanism. In addition, luminescence emission properties of Pr3+ ions at waveguide volume are well preserved during the femtosecond laser inscription process, which may result in a potential high-power visible waveguide laser.","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":" ","pages":""},"PeriodicalIF":15.3000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronic Advances","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.29026/OEA.2021.200005","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 21

Abstract

We report on the fabrication of circular cladding waveguides with cross-section diameters of 60−120 μm in Pr:YAG crystal by applying femtosecond laser inscription. The fabricated waveguides present 2D guidance on the cross-section and fairly low propagation losses. Multiple high-order guiding modes are observed in waveguides with different diameters. Corresponding simulation results reveal the origin of a specific kind of guiding modes. Confocal micro-Raman (μ-Raman) experiments demonstrate the modification effects in femtosecond laser affected areas and ascertain the refractive index induced guiding mechanism. In addition, luminescence emission properties of Pr3+ ions at waveguide volume are well preserved during the femtosecond laser inscription process, which may result in a potential high-power visible waveguide laser.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
飞秒激光制备Pr:YAG圆形包层波导:拉曼、发光特性和引导性能
我们报道了用飞秒激光在Pr:YAG晶体中制备截面直径为60−120μm的圆形包层波导。所制造的波导在横截面上呈现2D引导并且具有相当低的传播损耗。在不同直径的波导中观察到多个高阶导模。相应的仿真结果揭示了一种特定制导方式的起源。共聚焦微拉曼(μ-Raman)实验证明了飞秒激光影响区的改性效应,并确定了折射率诱导的引导机制。此外,在飞秒激光刻蚀过程中,Pr3+离子在波导体积下的发光特性得到了很好的保留,这可能导致潜在的高功率可见光波导激光器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.30
自引率
7.10%
发文量
128
期刊介绍: Opto-Electronic Advances (OEA) is a distinguished scientific journal that has made significant strides since its inception in March 2018. Here's a collated summary of its key features and accomplishments: Impact Factor and Ranking: OEA boasts an impressive Impact Factor of 14.1, which positions it within the Q1 quartiles of the Optics category. This high ranking indicates that the journal is among the top 25% of its field in terms of citation impact. Open Access and Peer Review: As an open access journal, OEA ensures that research findings are freely available to the global scientific community, promoting wider dissemination and collaboration. It upholds rigorous academic standards through a peer review process, ensuring the quality and integrity of the published research. Database Indexing: OEA's content is indexed in several prestigious databases, including the Science Citation Index (SCI), Engineering Index (EI), Scopus, Chemical Abstracts (CA), and the Index to Chinese Periodical Articles (ICI). This broad indexing facilitates easy access to the journal's articles by researchers worldwide. Scope and Purpose: OEA is committed to serving as a platform for the exchange of knowledge through the publication of high-quality empirical and theoretical research papers. It covers a wide range of topics within the broad area of optics, photonics, and optoelectronics, catering to researchers, academicians, professionals, practitioners, and students alike.
期刊最新文献
Physics-informed deep learning for fringe pattern analysis ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band Low-loss chip-scale programmable silicon photonic processor Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1