The future of biometrics technology: from face recognition to related applications

Hitoshi Imaoka, H. Hashimoto, Koichi Takahashi, Akinori F. Ebihara, Jianquan Liu, Akihiro Hayasaka, Yusuke Morishita, K. Sakurai
{"title":"The future of biometrics technology: from face recognition to related applications","authors":"Hitoshi Imaoka, H. Hashimoto, Koichi Takahashi, Akinori F. Ebihara, Jianquan Liu, Akihiro Hayasaka, Yusuke Morishita, K. Sakurai","doi":"10.1017/ATSIP.2021.8","DOIUrl":null,"url":null,"abstract":"Biometric recognition technologies have become more important in the modern society due to their convenience with the recent informatization and the dissemination of network services. Among such technologies, face recognition is one of the most convenient and practical because it enables authentication from a distance without requiring any authentication operations manually. As far as we know, face recognition is susceptible to the changes in the appearance of faces due to aging, the surrounding lighting, and posture. There were a number of technical challenges that need to be resolved. Recently, remarkable progress has been made thanks to the advent of deep learning methods. In this position paper, we provide an overview of face recognition technology and introduce its related applications, including face presentation attack detection, gaze estimation, person re-identification and image data mining. We also discuss the research challenges that still need to be addressed and resolved.","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/ATSIP.2021.8","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APSIPA Transactions on Signal and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/ATSIP.2021.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9

Abstract

Biometric recognition technologies have become more important in the modern society due to their convenience with the recent informatization and the dissemination of network services. Among such technologies, face recognition is one of the most convenient and practical because it enables authentication from a distance without requiring any authentication operations manually. As far as we know, face recognition is susceptible to the changes in the appearance of faces due to aging, the surrounding lighting, and posture. There were a number of technical challenges that need to be resolved. Recently, remarkable progress has been made thanks to the advent of deep learning methods. In this position paper, we provide an overview of face recognition technology and introduce its related applications, including face presentation attack detection, gaze estimation, person re-identification and image data mining. We also discuss the research challenges that still need to be addressed and resolved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物识别技术的未来:从人脸识别到相关应用
随着最近的信息化和网络服务的普及,生物识别技术因其方便性在现代社会中变得更加重要。在这些技术中,人脸识别是最方便和实用的技术之一,因为它可以在不需要手动进行任何身份验证操作的情况下进行远程身份验证。据我们所知,人脸识别容易受到衰老、周围光线和姿势导致的人脸外观变化的影响。有许多技术挑战需要解决。最近,由于深度学习方法的出现,已经取得了显著的进展。在本文中,我们对人脸识别技术进行了概述,并介绍了其相关应用,包括人脸呈现攻击检测、凝视估计、人脸重新识别和图像数据挖掘。我们还讨论了仍然需要解决的研究挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
APSIPA Transactions on Signal and Information Processing
APSIPA Transactions on Signal and Information Processing ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
8.60
自引率
6.20%
发文量
30
审稿时长
40 weeks
期刊最新文献
A Comprehensive Overview of Computational Nuclei Segmentation Methods in Digital Pathology Speech-and-Text Transformer: Exploiting Unpaired Text for End-to-End Speech Recognition GP-Net: A Lightweight Generative Convolutional Neural Network with Grasp Priority Reversible Data Hiding in Compressible Encrypted Images with Capacity Enhancement Convolutional Neural Networks Inference Memory Optimization with Receptive Field-Based Input Tiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1