Behaviour recognition based on the integration of multigranular motion features in the Internet of Things

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS Digital Communications and Networks Pub Date : 2024-06-01 DOI:10.1016/j.dcan.2022.10.011
Lizong Zhang , Yiming Wang , Ke Yan , Yi Su , Nawaf Alharbe , Shuxin Feng
{"title":"Behaviour recognition based on the integration of multigranular motion features in the Internet of Things","authors":"Lizong Zhang ,&nbsp;Yiming Wang ,&nbsp;Ke Yan ,&nbsp;Yi Su ,&nbsp;Nawaf Alharbe ,&nbsp;Shuxin Feng","doi":"10.1016/j.dcan.2022.10.011","DOIUrl":null,"url":null,"abstract":"<div><p>With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices, crowdsensing systems in the Internet of Things (IoT) are now conducting complicated video analysis tasks such as behaviour recognition. These applications have dramatically increased the diversity of IoT systems. Specifically, behaviour recognition in videos usually requires a combinatorial analysis of the spatial information about objects and information about their dynamic actions in the temporal dimension. Behaviour recognition may even rely more on the modeling of temporal information containing short-range and long-range motions, in contrast to computer vision tasks involving images that focus on understanding spatial information. However, current solutions fail to jointly and comprehensively analyse short-range motions between adjacent frames and long-range temporal aggregations at large scales in videos. In this paper, we propose a novel behaviour recognition method based on the integration of multigranular (IMG) motion features, which can provide support for deploying video analysis in multimedia IoT crowdsensing systems. In particular, we achieve reliable motion information modeling by integrating a channel attention-based short-term motion feature enhancement module (CSEM) and a cascaded long-term motion feature integration module (CLIM). We evaluate our model on several action recognition benchmarks, such as HMDB51, Something-Something and UCF101. The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods, which confirms its effectiveness and efficiency.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864822002206/pdfft?md5=764e303708401baef55f84c6951af22a&pid=1-s2.0-S2352864822002206-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822002206","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices, crowdsensing systems in the Internet of Things (IoT) are now conducting complicated video analysis tasks such as behaviour recognition. These applications have dramatically increased the diversity of IoT systems. Specifically, behaviour recognition in videos usually requires a combinatorial analysis of the spatial information about objects and information about their dynamic actions in the temporal dimension. Behaviour recognition may even rely more on the modeling of temporal information containing short-range and long-range motions, in contrast to computer vision tasks involving images that focus on understanding spatial information. However, current solutions fail to jointly and comprehensively analyse short-range motions between adjacent frames and long-range temporal aggregations at large scales in videos. In this paper, we propose a novel behaviour recognition method based on the integration of multigranular (IMG) motion features, which can provide support for deploying video analysis in multimedia IoT crowdsensing systems. In particular, we achieve reliable motion information modeling by integrating a channel attention-based short-term motion feature enhancement module (CSEM) and a cascaded long-term motion feature integration module (CLIM). We evaluate our model on several action recognition benchmarks, such as HMDB51, Something-Something and UCF101. The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods, which confirms its effectiveness and efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网中基于多粒度运动特征集成的行为识别
随着 5G/6G 系统等尖端通信技术的采用和设备的广泛开发,物联网(IoT)中的群感系统正在执行复杂的视频分析任务,如行为识别。这些应用大大增加了物联网系统的多样性。具体来说,视频中的行为识别通常需要对物体的空间信息和物体在时间维度上的动态行为信息进行组合分析。行为识别甚至可能更依赖于包含短程和长程运动的时间信息建模,而涉及图像的计算机视觉任务则侧重于理解空间信息。然而,目前的解决方案无法联合全面地分析视频中相邻帧之间的短程运动和大尺度的长程时间聚合。在本文中,我们提出了一种基于多粒度(IMG)运动特征整合的新型行为识别方法,可为在多媒体物联网人群感应系统中部署视频分析提供支持。特别是,我们通过整合基于通道注意力的短期运动特征增强模块(CSEM)和级联长期运动特征整合模块(CLIM),实现了可靠的运动信息建模。我们在几个动作识别基准(如 HMDB51、Something-Something 和 UCF101)上评估了我们的模型。实验结果表明,我们的方法优于之前的先进方法,这证明了它的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
期刊最新文献
Editorial Board Scheduling optimization for UAV communication coverage using virtual force-based PSO model Hybrid millimeter wave heterogeneous networks with spatially correlated user equipment A novel hybrid authentication protocol utilizing lattice-based cryptography for IoT devices in fog networks Data-driven human and bot recognition from web activity logs based on hybrid learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1