R. Panda, L. Panigrahi, M. K. Nayak, A. Chamkha, S. Sahoo, A. Barik
{"title":"Nanofluid Based Pipe Flow Analysis in Absorber Pipe of Flat Plate Solar Collector: Effects of Inclination and Porosity","authors":"R. Panda, L. Panigrahi, M. K. Nayak, A. Chamkha, S. Sahoo, A. Barik","doi":"10.1166/jon.2023.1979","DOIUrl":null,"url":null,"abstract":"Nanofluid applications in solar collectors are an emerging area for enhanced heat transfer resulting in heat gain for domestic and industrial use. In the present work, the performance of a Flat Plate Solar Collector (FPSC) having water-CuO-based nanofluid has been studied. The effect\n of the tilting angle of cylindrical pipe and porosity of porous material is investigated for this nanofluid-based FPSC. A numerical approach has been adopted to stimulate the governing equations in the tube. The similarity transformation simplifies the model (PDEs) into ordinary differential\n equations (ODEs). The governing non-dimensional PDEs along with their appropriate boundary conditions are solved numerically using the 4th order Runge-Kutta method cum shooting technique. The impacts of significant and relevant physical parameters and physical quantities of interest are analyzed.\n From the present study, it is observed that amplification of tilting angle and curvature parameter ameliorates the heat transfer rate while that of porosity parameter controls it effectively. A similar approach can be employed for other solar collectors to assess the heat transfer augmentation\n by using nanofluids instead of existing fluids.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.1979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanofluid applications in solar collectors are an emerging area for enhanced heat transfer resulting in heat gain for domestic and industrial use. In the present work, the performance of a Flat Plate Solar Collector (FPSC) having water-CuO-based nanofluid has been studied. The effect
of the tilting angle of cylindrical pipe and porosity of porous material is investigated for this nanofluid-based FPSC. A numerical approach has been adopted to stimulate the governing equations in the tube. The similarity transformation simplifies the model (PDEs) into ordinary differential
equations (ODEs). The governing non-dimensional PDEs along with their appropriate boundary conditions are solved numerically using the 4th order Runge-Kutta method cum shooting technique. The impacts of significant and relevant physical parameters and physical quantities of interest are analyzed.
From the present study, it is observed that amplification of tilting angle and curvature parameter ameliorates the heat transfer rate while that of porosity parameter controls it effectively. A similar approach can be employed for other solar collectors to assess the heat transfer augmentation
by using nanofluids instead of existing fluids.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.