Reliability degradation prediction of photovoltaic modules based on dependability methods

Hadef Hefaidh, Djebabra Mébarek, Belkhir Negrou, Z. Driss
{"title":"Reliability degradation prediction of photovoltaic modules based on dependability methods","authors":"Hadef Hefaidh, Djebabra Mébarek, Belkhir Negrou, Z. Driss","doi":"10.1108/ijqrm-07-2021-0239","DOIUrl":null,"url":null,"abstract":"PurposeThe reliability prediction is among the most important objectives for achieving overall system performance, and this prediction carried out by anticipating system performance degradation. In this context, the purpose of this research paper is to development of methodology for the photovoltaic (PV) modules' reliability prediction taking into account their future operating context.Design/methodology/approachThe proposed methodology is framed by dependability methods, in this regard, two methods of dysfunctional analysis were used, the Failure Mode and Effects Criticality Analysis (FMECA) method is carried out for identification of the degradation modes, and the Fault Tree Analysis (FTA) method is used for identification the causes of PV modules degradation and the parameters influencing its degradation. Then, based on these parameters, accelerated tests have been used to predict the reliability of PV modules.FindingsThe application of the proposed methodology on PWX 500 PV modules' in different regions of Algeria makes it possible to predict its reliability, taking into account the future constraints on its operation. In this case, the temperature and relative humidity vary from one region to another was chosen as constraints. The results obtained from the different regions confirms the reliability provided by the designer of the Saharan cities Biskra, In Salah, Tamanraset, and affirms this value for the two Mediterranean cities of Oran and Algiers.Originality/valueThe proposed methodology is developed for the reliability prediction of the PV modules taking into account their future operating context and, the choice of different regions confirms or disproves the reliability provided by the designer of the PV modules studied. This application confirms their performance within the framework of the reliability prediction.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-07-2021-0239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 1

Abstract

PurposeThe reliability prediction is among the most important objectives for achieving overall system performance, and this prediction carried out by anticipating system performance degradation. In this context, the purpose of this research paper is to development of methodology for the photovoltaic (PV) modules' reliability prediction taking into account their future operating context.Design/methodology/approachThe proposed methodology is framed by dependability methods, in this regard, two methods of dysfunctional analysis were used, the Failure Mode and Effects Criticality Analysis (FMECA) method is carried out for identification of the degradation modes, and the Fault Tree Analysis (FTA) method is used for identification the causes of PV modules degradation and the parameters influencing its degradation. Then, based on these parameters, accelerated tests have been used to predict the reliability of PV modules.FindingsThe application of the proposed methodology on PWX 500 PV modules' in different regions of Algeria makes it possible to predict its reliability, taking into account the future constraints on its operation. In this case, the temperature and relative humidity vary from one region to another was chosen as constraints. The results obtained from the different regions confirms the reliability provided by the designer of the Saharan cities Biskra, In Salah, Tamanraset, and affirms this value for the two Mediterranean cities of Oran and Algiers.Originality/valueThe proposed methodology is developed for the reliability prediction of the PV modules taking into account their future operating context and, the choice of different regions confirms or disproves the reliability provided by the designer of the PV modules studied. This application confirms their performance within the framework of the reliability prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可靠性方法的光伏组件可靠性退化预测
目的可靠性预测是实现系统整体性能的最重要目标之一,这种预测是通过预测系统性能退化来实现的。在这种情况下,本研究论文的目的是开发考虑光伏组件未来运行环境的光伏组件可靠性预测方法。设计/方法论/方法论所提出的方法论由可靠性方法构成,在这方面,使用了两种功能失调分析方法,即故障模式和影响关键性分析(FMECA)方法来识别退化模式,故障树分析(FTA)方法用于识别光伏组件退化的原因和影响其退化的参数。然后,基于这些参数,使用加速测试来预测光伏组件的可靠性。发现将所提出的方法应用于阿尔及利亚不同地区的PWX 500光伏组件,可以预测其可靠性,同时考虑到未来对其运行的限制。在这种情况下,温度和相对湿度因区域而异。从不同地区获得的结果证实了撒哈拉城市Biskra、In Salah和Tamanraset的设计者所提供的可靠性,并确认了奥兰和阿尔及尔这两个地中海城市的可靠性。Originality/value所提出的方法是为光伏组件的可靠性预测而制定的,考虑到了其未来的运行环境,不同区域的选择证实或否定了所研究的PV模块的设计者所提供的可靠性。该应用程序在可靠性预测的框架内确认了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
12.00%
发文量
53
期刊介绍: In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining
期刊最新文献
Appraise the role of novelty-seeking on consumers’ satisfaction using online food delivery applications The influence of library service quality, library image, place, personal control and trust on loyalty: the mediating role of perceived service value and satisfaction The impact of quality on health-insurance users' satisfaction in Saudi Arabia: the mediating role of brand image and utilitarian value Proposal of a facilitating methodology for fuzzy FMEA implementation with application in process risk analysis in the aeronautical sector Critical failure factors for Quality 4.0: an exploratory qualitative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1