Effect of Ascorbic Acid Concentration on Cu2O Production for Photoelectrochemical Water Splitting on Photocathode Thin Films

K. L. Rahayu, Abdul Haris, G. Gunawan
{"title":"Effect of Ascorbic Acid Concentration on Cu2O Production for Photoelectrochemical Water Splitting on Photocathode Thin Films","authors":"K. L. Rahayu, Abdul Haris, G. Gunawan","doi":"10.14710/jksa.25.12.442-449","DOIUrl":null,"url":null,"abstract":"Hydrogen energy has great potential as a renewable energy source. Electrochemical water-splitting can be employed to obtain hydrogen by converting solar energy into hydrogen. In this study, Cu2O thin film electrodes have been successfully synthesized using ascorbic acid using the spin coating method. This study aimed to determine the effect of ascorbic acid in manufacturing Cu2O semiconductors as photocathodes and their activity for electrochemical water-splitting. The results indicated that ascorbate affected the photon current and onset potential of the Cu2O semiconductor. The synthesis results found that Cu2O at C1 (lower concentration than Cu2+) yielded 95.69%, and the yield for Cu2O at C2 (concentration equal to Cu2+) was 96.2%. The yield for Cu2O at C3 (concentration greater than Cu2+) was 99.82%. The photon currents generated by adding 3%, 6%, and 9% ascorbate solution were 1.18, 1.69, and 1.78 mA/cm2, respectively, at 0.3 V vs. RHE (Reversible Hydrogen Electrode). X-ray diffraction analysis revealed that the sample consisted of Cu2O C3 with an average grain size of 17.55 nm. Meanwhile, Cu2O C1 and Cu2O C2 had average grain sizes of 38.99 nm and 36.42 nm, respectively. SEM analysis showed the presence of Cu2O with a cuboid and flower-like morphology. EDX analysis showed that the samples contained elements of Cu: O, 73.97%: 26.03%; 79.89%: 20.11% and 98.43%: 1.57% respectively.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Sains dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jksa.25.12.442-449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen energy has great potential as a renewable energy source. Electrochemical water-splitting can be employed to obtain hydrogen by converting solar energy into hydrogen. In this study, Cu2O thin film electrodes have been successfully synthesized using ascorbic acid using the spin coating method. This study aimed to determine the effect of ascorbic acid in manufacturing Cu2O semiconductors as photocathodes and their activity for electrochemical water-splitting. The results indicated that ascorbate affected the photon current and onset potential of the Cu2O semiconductor. The synthesis results found that Cu2O at C1 (lower concentration than Cu2+) yielded 95.69%, and the yield for Cu2O at C2 (concentration equal to Cu2+) was 96.2%. The yield for Cu2O at C3 (concentration greater than Cu2+) was 99.82%. The photon currents generated by adding 3%, 6%, and 9% ascorbate solution were 1.18, 1.69, and 1.78 mA/cm2, respectively, at 0.3 V vs. RHE (Reversible Hydrogen Electrode). X-ray diffraction analysis revealed that the sample consisted of Cu2O C3 with an average grain size of 17.55 nm. Meanwhile, Cu2O C1 and Cu2O C2 had average grain sizes of 38.99 nm and 36.42 nm, respectively. SEM analysis showed the presence of Cu2O with a cuboid and flower-like morphology. EDX analysis showed that the samples contained elements of Cu: O, 73.97%: 26.03%; 79.89%: 20.11% and 98.43%: 1.57% respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗坏血酸浓度对光电阴极薄膜电解水分解Cu2O产率的影响
氢能作为一种可再生能源具有巨大的潜力。电化学水分解可以通过将太阳能转化为氢气来获得氢气。本研究以抗坏血酸为原料,采用旋涂法成功合成了Cu2O薄膜电极。本研究旨在确定抗坏血酸在制备Cu2O半导体光电阴极中的作用及其电化学分解水的活性。结果表明,抗坏血酸盐对Cu2O半导体的光子电流和起始电位有影响。合成结果表明,在C1(浓度低于Cu2+)时,Cu2O的产率为95.69%,在C2(浓度等于Cu2+)下,Cu2O的产率为96.2%。在C3(浓度大于Cu2+)处,Cu2O产率为99.82%。在0.3V下,添加3%、6%和9%抗坏血酸溶液产生的光子电流分别为1.18、1.69和1.78mA/cm2。RHE(可逆氢电极)。X射线衍射分析表明,样品由Cu2O C3组成,平均晶粒尺寸为17.55nm。同时,Cu2O C1和Cu2O C2的平均晶粒尺寸分别为38.99 nm和36.42 nm。SEM分析显示存在具有长方体和花状形态的Cu2O。EDX分析表明,样品中Cu含量为73.97%:26.03%;79.89%:20.11%和98.43%:1.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
36
审稿时长
17 weeks
期刊最新文献
Production of Biodiesel from Candlenut Seed Oil (Aleurites Moluccana Wild) Using a NaOH/CaO/Ca Catalyst with Microwave Heating Synthesis of Molecularly Imprinted Polymers with Magnetite Cores for Ibuprofen Adsorption Impact of Fermentation on Hyptolide and Phytochemical Composition of Hyptis pectinata (L.) Poit Effects of Temperature, Molecular Weight, and Non-Solvent Variation on the Physical Properties of PVDF Membranes Prepared through Immersion Precipitation Isolation of Phenolic Acids from Land Kale (Ipomoea reptans Poir) and Antioxidant Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1