Accelerating molecular dynamics simulations by a hybrid molecular dynamics-continuum mechanical approach

IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Soft Materials Pub Date : 2022-04-25 DOI:10.1080/1539445X.2022.2061513
C. Bauer, M. Ries, S. Pfaller
{"title":"Accelerating molecular dynamics simulations by a hybrid molecular dynamics-continuum mechanical approach","authors":"C. Bauer, M. Ries, S. Pfaller","doi":"10.1080/1539445X.2022.2061513","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this contribution, molecular dynamics (MD) simulations in combination with continuum mechanical (CM) approaches are performed to investigate particle movements under uniaxial deformations of an amorphous polymer at particle resolution. A coarse-grained (CG) model of atactic polystyrene is used as an exemplary model system. We propose a hybrid molecular dynamics-continuum mechanical (MD-CM) approach to simulate the deformation behavior of the polymer. As a reference, purely molecular dynamics systems are used. The methods are compared with regard to the local displacement of the particles and the global stress-strain behavior of the overall system. The good reproducibility of the system’s mechanical behavior with the hybrid molecular dynamics-continuum mechanical method is shown. Furthermore, it is demonstrated that CPU time can be significantly reduced with the hybrid calculation model.","PeriodicalId":22140,"journal":{"name":"Soft Materials","volume":"20 1","pages":"428 - 443"},"PeriodicalIF":1.6000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1539445X.2022.2061513","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT In this contribution, molecular dynamics (MD) simulations in combination with continuum mechanical (CM) approaches are performed to investigate particle movements under uniaxial deformations of an amorphous polymer at particle resolution. A coarse-grained (CG) model of atactic polystyrene is used as an exemplary model system. We propose a hybrid molecular dynamics-continuum mechanical (MD-CM) approach to simulate the deformation behavior of the polymer. As a reference, purely molecular dynamics systems are used. The methods are compared with regard to the local displacement of the particles and the global stress-strain behavior of the overall system. The good reproducibility of the system’s mechanical behavior with the hybrid molecular dynamics-continuum mechanical method is shown. Furthermore, it is demonstrated that CPU time can be significantly reduced with the hybrid calculation model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用混合分子动力学-连续体力学方法加速分子动力学模拟
在这篇贡献中,分子动力学(MD)模拟与连续介质力学(CM)方法相结合,以颗粒分辨率研究非晶聚合物在单轴变形下的颗粒运动。以无规聚苯乙烯的粗粒度(CG)模型作为示例性模型系统。我们提出了一种混合分子动力学-连续介质力学(MD-CM)方法来模拟聚合物的变形行为。作为参考,使用纯分子动力学系统。比较了两种方法的局部位移和整体系统的应力-应变特性。用混合分子动力学-连续介质力学方法对体系的力学行为有较好的再现性。此外,还证明了混合计算模型可以显著减少CPU时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Materials
Soft Materials 工程技术-材料科学:综合
CiteScore
2.90
自引率
0.00%
发文量
21
审稿时长
2.2 months
期刊介绍: Providing a common forum for all soft matter scientists, Soft Materials covers theory, simulation, and experimental research in this rapidly expanding and interdisciplinary field. As soft materials are often at the heart of modern technologies, soft matter science has implications and applications in many areas ranging from biology to engineering. Unlike many journals which focus primarily on individual classes of materials or particular applications, Soft Materials draw on all physical, chemical, materials science, and biological aspects of soft matter. Featured topics include polymers, biomacromolecules, colloids, membranes, Langmuir-Blodgett films, liquid crystals, granular matter, soft interfaces, complex fluids, surfactants, gels, nanomaterials, self-organization, supramolecular science, molecular recognition, soft glasses, amphiphiles, foams, and active matter. Truly international in scope, Soft Materials contains original research, invited reviews, in-depth technical tutorials, and book reviews.
期刊最新文献
Molecular simulation on solubilization of fullerene C60 by C12E6 nonionic surfactants Influence of normal force on magnetic-field-induced shear modulus of isotropic and anisotropic magnetorheological elastomers having spherical and non-spherical shape iron particles Preparation of high tenacity bilayer hydrogel with rapid thermal response based on the introduction of sodium alginate and porogen Low voltage flexible high performance organic field-effect transistor and its application for ultraviolet light detectors Degradable rGO-MoS2-Fe2O3 based carboxymethyl cellulose packaging films for fruit preservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1