{"title":"Two Steps at a Time---Taking GAN Training in Stride with Tseng's Method","authors":"A. Böhm, Michael Sedlmayer, E. R. Csetnek, R. Boț","doi":"10.1137/21m1420939","DOIUrl":null,"url":null,"abstract":"Motivated by the training of Generative Adversarial Networks (GANs), we study methods for solving minimax problems with additional nonsmooth regularizers. We do so by employing \\emph{monotone operator} theory, in particular the \\emph{Forward-Backward-Forward (FBF)} method, which avoids the known issue of limit cycling by correcting each update by a second gradient evaluation. Furthermore, we propose a seemingly new scheme which recycles old gradients to mitigate the additional computational cost. In doing so we rediscover a known method, related to \\emph{Optimistic Gradient Descent Ascent (OGDA)}. For both schemes we prove novel convergence rates for convex-concave minimax problems via a unifying approach. The derived error bounds are in terms of the gap function for the ergodic iterates. For the deterministic and the stochastic problem we show a convergence rate of $\\mathcal{O}(1/k)$ and $\\mathcal{O}(1/\\sqrt{k})$, respectively. We complement our theoretical results with empirical improvements in the training of Wasserstein GANs on the CIFAR10 dataset.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1420939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13
Abstract
Motivated by the training of Generative Adversarial Networks (GANs), we study methods for solving minimax problems with additional nonsmooth regularizers. We do so by employing \emph{monotone operator} theory, in particular the \emph{Forward-Backward-Forward (FBF)} method, which avoids the known issue of limit cycling by correcting each update by a second gradient evaluation. Furthermore, we propose a seemingly new scheme which recycles old gradients to mitigate the additional computational cost. In doing so we rediscover a known method, related to \emph{Optimistic Gradient Descent Ascent (OGDA)}. For both schemes we prove novel convergence rates for convex-concave minimax problems via a unifying approach. The derived error bounds are in terms of the gap function for the ergodic iterates. For the deterministic and the stochastic problem we show a convergence rate of $\mathcal{O}(1/k)$ and $\mathcal{O}(1/\sqrt{k})$, respectively. We complement our theoretical results with empirical improvements in the training of Wasserstein GANs on the CIFAR10 dataset.