Ruoque Shen, Jiefang Dong, Wenping Yuan, Wei Han, Tao Ye, Wenzhi Zhao
{"title":"A 30 m Resolution Distribution Map of Maize for China Based on Landsat and Sentinel Images","authors":"Ruoque Shen, Jiefang Dong, Wenping Yuan, Wei Han, Tao Ye, Wenzhi Zhao","doi":"10.34133/2022/9846712","DOIUrl":null,"url":null,"abstract":"As the second largest producer of maize, China contributes 23% of global maize production and plays an important role in guaranteeing maize markets stability. In spite of its importance, there is no 30 m spatial resolution distribution map of maize for all of China. This study used a time-weighted dynamic time warping method to identify planting areas of maize by comparing the similarity of time series of a satellite-based vegetation index at each pixel with a standard time series derived from known maize fields and mapped maize distribution from 2016 to 2020 over 22 provinces accounting for more than 99% of the maize planting area in China. Based on 18800 field-surveyed pixels at 30-meter spatial resolution, the distribution map yields 76.15% and 81.59% of producer’s and user’s accuracies averaged over the entire investigated provinces, respectively. Municipality- and county-level census data also show a good performance in reproducing the spatial distribution of maize. This study provides an approach to mapping maize over large areas based on a small volume of field survey data.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2022/9846712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
As the second largest producer of maize, China contributes 23% of global maize production and plays an important role in guaranteeing maize markets stability. In spite of its importance, there is no 30 m spatial resolution distribution map of maize for all of China. This study used a time-weighted dynamic time warping method to identify planting areas of maize by comparing the similarity of time series of a satellite-based vegetation index at each pixel with a standard time series derived from known maize fields and mapped maize distribution from 2016 to 2020 over 22 provinces accounting for more than 99% of the maize planting area in China. Based on 18800 field-surveyed pixels at 30-meter spatial resolution, the distribution map yields 76.15% and 81.59% of producer’s and user’s accuracies averaged over the entire investigated provinces, respectively. Municipality- and county-level census data also show a good performance in reproducing the spatial distribution of maize. This study provides an approach to mapping maize over large areas based on a small volume of field survey data.