The impact of long-term regional air mass patterns on nutrient precipitation chemistry and nutrient deposition within a United States grassland ecosystem

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Journal of Atmospheric Chemistry Pub Date : 2018-12-11 DOI:10.1007/s10874-018-9384-1
Matt T. Trentman
{"title":"The impact of long-term regional air mass patterns on nutrient precipitation chemistry and nutrient deposition within a United States grassland ecosystem","authors":"Matt T. Trentman","doi":"10.1007/s10874-018-9384-1","DOIUrl":null,"url":null,"abstract":"<p>Changes in the frequency of precipitation as a result of a changing climate, as well as anthropogenic induced deposition of nitrogen (N), both have the potential to alter grassland productivity and diversity. Central U.S. weather patterns are dominated by three major air mass trajectories including regional sources from the Gulf of Mexico (marine tropical, Mt), the Pacific Northwest (mild pacific, mP), and the Desert Southwest (continental tropical, Ct). In this work, the Hybrid Single Particle Lagrangian Integrated Trajectory model was used to determine trends in the proportion of precipitation events from these air mass sources from 1983 to 2006 relative to Konza Prairie Biological Station (KPBS), KS. The annual volume-weighted mean (VWM) concentrations and wet deposition of a variety of precipitation dissolved solutes were linked to source regions north or south of KPBS. The proportion of precipitation events from Mt significantly increased, while the proportion of events from Ct and mP decreased significantly over the study period. The annual VWM concentrations of most solutes were typically higher from precipitation sourced to the north of KPBS. However, wet deposition of four ecologically relevant solutes (NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>?</sup>, H<sup>+</sup><sub>,</sub> and SO<sub>4</sub><sup>?2</sup>) was higher from events from the southern region, likely due to higher precipitation amounts. The proportion of reduced N increased significantly over the study period but was not affected by source region despite the higher use of fertilizers for agriculture in the northern source region. Given the location of this site relative to three dominant air mass paths, future shifts in these patterns will likely impact wet nutrient deposition.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"75 4","pages":"399 - 410"},"PeriodicalIF":3.0000,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-018-9384-1","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-018-9384-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Changes in the frequency of precipitation as a result of a changing climate, as well as anthropogenic induced deposition of nitrogen (N), both have the potential to alter grassland productivity and diversity. Central U.S. weather patterns are dominated by three major air mass trajectories including regional sources from the Gulf of Mexico (marine tropical, Mt), the Pacific Northwest (mild pacific, mP), and the Desert Southwest (continental tropical, Ct). In this work, the Hybrid Single Particle Lagrangian Integrated Trajectory model was used to determine trends in the proportion of precipitation events from these air mass sources from 1983 to 2006 relative to Konza Prairie Biological Station (KPBS), KS. The annual volume-weighted mean (VWM) concentrations and wet deposition of a variety of precipitation dissolved solutes were linked to source regions north or south of KPBS. The proportion of precipitation events from Mt significantly increased, while the proportion of events from Ct and mP decreased significantly over the study period. The annual VWM concentrations of most solutes were typically higher from precipitation sourced to the north of KPBS. However, wet deposition of four ecologically relevant solutes (NH4+, NO3?, H+, and SO4?2) was higher from events from the southern region, likely due to higher precipitation amounts. The proportion of reduced N increased significantly over the study period but was not affected by source region despite the higher use of fertilizers for agriculture in the northern source region. Given the location of this site relative to three dominant air mass paths, future shifts in these patterns will likely impact wet nutrient deposition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长期区域气团模式对美国草地生态系统养分降水化学和养分沉积的影响
气候变化导致的降水频率的变化,以及人为引起的氮沉积,都有可能改变草地的生产力和多样性。美国中部的天气模式由三个主要气团轨迹控制,包括来自墨西哥湾(海洋热带,Mt)、太平洋西北部(温和太平洋,mP)和西南沙漠(大陆热带,Ct)的区域气团。本文采用混合单粒子拉格朗日综合轨迹模型确定了1983 - 2006年这些气团源降水事件比例的变化趋势,并与康扎草原生物站(KPBS)进行了比较。各种降水溶解溶质的年体积加权平均(VWM)浓度和湿沉降与KPBS北部或南部的源区有关。研究期间,来自山地的降水事件比例显著增加,而来自山地和山地的降水事件比例显著降低。大多数溶质的年VWM浓度通常来自KPBS以北的降水。然而,四种生态相关溶质(NH4+, NO3?(H+)和SO4?2),可能是由于南方地区的降水较多。研究期间氮素减少比例显著增加,但不受源区影响,尽管北方源区农业化肥用量较高。考虑到该地点相对于三个主要气团路径的位置,这些模式的未来变化可能会影响湿营养物质的沉积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
期刊最新文献
Association between time of day and carbonaceous PM2.5 and oxidative potential in summer and winter in the Suncheon industrial area, Republic of Korea PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment in Iran Characteristics of surface air quality over provincial capital cities in Northwestern China during 2013–2020 Stable isotopic, bulk, and molecular compositions of post-monsoon biomass-burning aerosols in Delhi suggest photochemical ageing during regional transport is more pronounced than local processing A review on sequential extraction of metals bound particulate matter and their health risk assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1