{"title":"Functionalized Dynamic Metal–Organic Frameworks as Smart Switches for Sensing and Adsorption Applications","authors":"Binbin Qian, Ze Chang, Xian-He Bu","doi":"10.1007/s41061-019-0271-2","DOIUrl":null,"url":null,"abstract":"<p>Over the past two decades, metal–organic frameworks (MOFs) with flexible structures or dynamic behavior have shown great potential as functional materials in many fields. This paper presents a review of these dynamic and functional MOFs, which can undergo controllable and reversible transformation, with regard to their application as smart switches. Trigger conditions, which include physical/chemical stimuli (e.g., guest molecules, light, temperature, pressure), are also discussed. Research methods for investigating the dynamic processes and mechanisms involving experimental characterization and computational modeling are briefly mentioned as well. The emphasis is on the aspects of the design and functionalization of dynamic MOFs. The pre-design of metal nodes, organic linkers, and topology, as well as post-modification of components, increases the possibility of obtaining functionalized dynamic materials. Recent advances with regard to potential applications for dynamic frameworks as smart switches for adsorption and sensing are also reviewed.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-019-0271-2","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-019-0271-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13
Abstract
Over the past two decades, metal–organic frameworks (MOFs) with flexible structures or dynamic behavior have shown great potential as functional materials in many fields. This paper presents a review of these dynamic and functional MOFs, which can undergo controllable and reversible transformation, with regard to their application as smart switches. Trigger conditions, which include physical/chemical stimuli (e.g., guest molecules, light, temperature, pressure), are also discussed. Research methods for investigating the dynamic processes and mechanisms involving experimental characterization and computational modeling are briefly mentioned as well. The emphasis is on the aspects of the design and functionalization of dynamic MOFs. The pre-design of metal nodes, organic linkers, and topology, as well as post-modification of components, increases the possibility of obtaining functionalized dynamic materials. Recent advances with regard to potential applications for dynamic frameworks as smart switches for adsorption and sensing are also reviewed.
期刊介绍:
Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.