Weak and strong error analysis for mean-field rank-based particle approximations of one-dimensional viscous scalar conservation laws

IF 1.8 2区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Probability Pub Date : 2022-12-01 DOI:10.1214/21-aap1776
Oumaima Bencheikh, B. Jourdain
{"title":"Weak and strong error analysis for mean-field rank-based particle approximations of one-dimensional viscous scalar conservation laws","authors":"Oumaima Bencheikh, B. Jourdain","doi":"10.1214/21-aap1776","DOIUrl":null,"url":null,"abstract":"In this paper, we analyse the rate of convergence of a system of N interacting particles with mean-field rank-based interaction in the drift coefficient and constant diffusion coefficient. We first adapt arguments by Kolli and Shkolnikov [22] to check trajectorial propagation of chaos with optimal rate N−1/2 to the associated stochastic differential equations nonlinear in the sense of McKean. We next relax the assumptions needed by Bossy [6] to check the convergence in L (R) with rate O ( 1 √ N + h ) of the empirical cumulative distribution function of the Euler discretization with step h of the particle system to the solution of a one dimensional viscous scalar conservation law. Last, we prove that the bias of this stochastic particle method behaves as O ( 1 N + h ) . We provide numerical results which confirm our theoretical estimates.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-aap1776","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we analyse the rate of convergence of a system of N interacting particles with mean-field rank-based interaction in the drift coefficient and constant diffusion coefficient. We first adapt arguments by Kolli and Shkolnikov [22] to check trajectorial propagation of chaos with optimal rate N−1/2 to the associated stochastic differential equations nonlinear in the sense of McKean. We next relax the assumptions needed by Bossy [6] to check the convergence in L (R) with rate O ( 1 √ N + h ) of the empirical cumulative distribution function of the Euler discretization with step h of the particle system to the solution of a one dimensional viscous scalar conservation law. Last, we prove that the bias of this stochastic particle method behaves as O ( 1 N + h ) . We provide numerical results which confirm our theoretical estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一维粘性标量守恒律平均场秩基粒子近似的弱、强误差分析
本文分析了在漂移系数和恒定扩散系数下,具有平均场秩相互作用的N粒子相互作用系统的收敛速度。我们首先采用Kolli和Shkolnikov[22]的论点,对McKean意义上的非线性随机微分方程的最优速率N−1/2混沌的轨迹传播进行了检验。接下来,我们放宽了Bossy[6]检验粒子系统步长为h的欧拉离散的经验累积分布函数在L (R)以速率O(1√N + h)收敛到一维粘性标量守恒律解所需的假设。最后,我们证明了这种随机粒子方法的偏差表现为O (1 N + h)。我们提供的数值结果证实了我们的理论估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
期刊最新文献
Disagreement coupling of Gibbs processes with an application to Poisson approximation Hydrodynamic limit for the Kob–Andersen model Geometry of random Cayley graphs of Abelian groups The trunks of CLE(4) explorations Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1