{"title":"Hybrid genetic algorithm for bi-criteria objectives in scheduling process","authors":"B. Raghavendra","doi":"10.24425/MPER.2020.133733","DOIUrl":null,"url":null,"abstract":"Scheduling of multiobjective problems has gained the interest of the researchers. Past many decades, various classical techniques have been developed to address the multiobjective problems, but evolutionary optimizations such as genetic algorithm, particle swarm, tabu search method and many more are being successfully used. Researchers have reported that hybrid of these algorithms has increased the efficiency and effectiveness of the solution. Genetic algorithms in conjunction with Pareto optimization are used to find the best solution for bi-criteria objectives. Numbers of applications involve many objective functions, and appli- cation of the Pareto front method may have a large number of potential solutions. Selecting a feasible solution from such a large set is difficult to arrive the right solution for the decision maker. In this paper Pareto front ranking method is proposed to select the best parents for producing offspring’s necessary to generate the new populations sets in genetic algorithms. The bi-criteria objectives minimizing the machine idleness and penalty cost for scheduling process is solved using genetic algorithm based Pareto front ranking method. The algorithm is coded in Matlab, and simulations were carried out for the crossover probability of 0.6, 0.7, 0.8, and 0.9. The results obtained from the simulations are encouraging and consistent for a crossover probability of 0.6.","PeriodicalId":45454,"journal":{"name":"Management and Production Engineering Review","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Management and Production Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/MPER.2020.133733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Scheduling of multiobjective problems has gained the interest of the researchers. Past many decades, various classical techniques have been developed to address the multiobjective problems, but evolutionary optimizations such as genetic algorithm, particle swarm, tabu search method and many more are being successfully used. Researchers have reported that hybrid of these algorithms has increased the efficiency and effectiveness of the solution. Genetic algorithms in conjunction with Pareto optimization are used to find the best solution for bi-criteria objectives. Numbers of applications involve many objective functions, and appli- cation of the Pareto front method may have a large number of potential solutions. Selecting a feasible solution from such a large set is difficult to arrive the right solution for the decision maker. In this paper Pareto front ranking method is proposed to select the best parents for producing offspring’s necessary to generate the new populations sets in genetic algorithms. The bi-criteria objectives minimizing the machine idleness and penalty cost for scheduling process is solved using genetic algorithm based Pareto front ranking method. The algorithm is coded in Matlab, and simulations were carried out for the crossover probability of 0.6, 0.7, 0.8, and 0.9. The results obtained from the simulations are encouraging and consistent for a crossover probability of 0.6.
期刊介绍:
Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management.