{"title":"Super Climate Events","authors":"J. Overland","doi":"10.3390/cli11080169","DOIUrl":null,"url":null,"abstract":"New environmental extremes are currently underway and are much greater than those in previous records. These are mostly regional, singular events that are caused by global change/local weather combinations and are larger than the impact of linear temperature increases projected using climate models. These new states cannot easily be assigned probabilities because they often have no historical analogs. Thus, the term super climate extremes is used. Examples are the loss of sea ice and ecosystem reorganization in northern marine Alaska, heatwave extreme in western Canada, and the loss of snow in Greenland. New combined extreme occurrences, which are reported almost daily, lead to a new, higher level of climate change urgency. The loss of sea ice in 2018–2019 was a result of warmer Arctic temperatures and changes in the jet stream. They resulted in a chain of impacts from southerly winds, the northward movement of predatory fish, and the reduction of food security for coastal communities. Record temperatures were measured in southwestern British Columbia following previous drought conditions, a confluence of two storm tracks, and warming through atmospheric subsidence. Greenland’s losses had clear skies and jet stream events. Such new extremes are present indicators of climate change. Their impacts result from the interaction between physical and ecological processes, and they justify the creation of a new climate change category based on super climate extremes.","PeriodicalId":37615,"journal":{"name":"Climate","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11080169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
New environmental extremes are currently underway and are much greater than those in previous records. These are mostly regional, singular events that are caused by global change/local weather combinations and are larger than the impact of linear temperature increases projected using climate models. These new states cannot easily be assigned probabilities because they often have no historical analogs. Thus, the term super climate extremes is used. Examples are the loss of sea ice and ecosystem reorganization in northern marine Alaska, heatwave extreme in western Canada, and the loss of snow in Greenland. New combined extreme occurrences, which are reported almost daily, lead to a new, higher level of climate change urgency. The loss of sea ice in 2018–2019 was a result of warmer Arctic temperatures and changes in the jet stream. They resulted in a chain of impacts from southerly winds, the northward movement of predatory fish, and the reduction of food security for coastal communities. Record temperatures were measured in southwestern British Columbia following previous drought conditions, a confluence of two storm tracks, and warming through atmospheric subsidence. Greenland’s losses had clear skies and jet stream events. Such new extremes are present indicators of climate change. Their impacts result from the interaction between physical and ecological processes, and they justify the creation of a new climate change category based on super climate extremes.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.