3D sputtering simulations of the CZTS, Si and CIGS thin films using Monte-Carlo method

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2021-10-21 DOI:10.1515/mcma-2021-2094
Salah Eddine Chouaib Refas, Abdelkader Bouazza, Y. Belhadji
{"title":"3D sputtering simulations of the CZTS, Si and CIGS thin films using Monte-Carlo method","authors":"Salah Eddine Chouaib Refas, Abdelkader Bouazza, Y. Belhadji","doi":"10.1515/mcma-2021-2094","DOIUrl":null,"url":null,"abstract":"Abstract The future of the industry development depends greatly on the permanently ensured energy needs and can be achieved only through the use of a variety of sustainable energy sources where the solar energy, which gains its optimal exploitation directly by linking it to the properties of solar cells and in particular to the crystallographic quality of the used semiconductor substrates, is one of them. Many growth processes are used to obtain a high quality of semiconductor formation and deposition, among them the DC sputtering. In this work, based on the Monte-Carlo method, a 3D DC sputtering simulation of the CZTS {\\mathrm{CZTS}} , Si {\\mathrm{Si}} and CIGS {\\mathrm{CIGS}} semiconductors thin film formation is proposed by considering Argon as vacuum chamber bombardment gas. We extrapolate firstly the best sputtering yield possible of the semiconductors CZTS {\\mathrm{CZTS}} and Silicon represented by their chemical formulas Cu 2 ⁢ ZnSnS 4 {\\mathrm{Cu}_{2}\\mathrm{Zn}\\mathrm{Sn}\\mathrm{S}_{4}} and Si {\\mathrm{Si}} , respectively, by the application of different energies and incidence angles. From the obtained results, firstly we deduce that the best sputtering angle is 85 ∘ {85^{\\circ}} ; in the same time, CZTS {\\mathrm{CZTS}} is more efficient comparing to the Si {\\mathrm{Si}} . Secondly, with the application of this angle ( 85 ∘ {85^{\\circ}} ) in the sputtering process for the CZTS {\\mathrm{CZTS}} ( Cu 2 ⁢ ZnSnS 4 {\\mathrm{Cu}_{2}\\mathrm{Zn}\\mathrm{Sn}\\mathrm{S}_{4}} ) and CIGS {\\mathrm{CIGS}} represented by its chemical formula CuIn x ⁢ Ga ( 1 - x ) ⁢ Se 2 {\\mathrm{Cu}\\mathrm{In}_{x}\\mathrm{Ga}_{(1-x)}\\mathrm{Se}_{2}} , and the variation of the bombardment energy in order to find the total ejected atoms from each element of these two materials, we deduce that the sulfide ( S 4 {\\mathrm{S}_{4}} ) and selenide ( Se 2 {\\mathrm{Se}_{2}} ) elements give the majority of the sputtering yield amount obtained.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"27 1","pages":"373 - 382"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2021-2094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The future of the industry development depends greatly on the permanently ensured energy needs and can be achieved only through the use of a variety of sustainable energy sources where the solar energy, which gains its optimal exploitation directly by linking it to the properties of solar cells and in particular to the crystallographic quality of the used semiconductor substrates, is one of them. Many growth processes are used to obtain a high quality of semiconductor formation and deposition, among them the DC sputtering. In this work, based on the Monte-Carlo method, a 3D DC sputtering simulation of the CZTS {\mathrm{CZTS}} , Si {\mathrm{Si}} and CIGS {\mathrm{CIGS}} semiconductors thin film formation is proposed by considering Argon as vacuum chamber bombardment gas. We extrapolate firstly the best sputtering yield possible of the semiconductors CZTS {\mathrm{CZTS}} and Silicon represented by their chemical formulas Cu 2 ⁢ ZnSnS 4 {\mathrm{Cu}_{2}\mathrm{Zn}\mathrm{Sn}\mathrm{S}_{4}} and Si {\mathrm{Si}} , respectively, by the application of different energies and incidence angles. From the obtained results, firstly we deduce that the best sputtering angle is 85 ∘ {85^{\circ}} ; in the same time, CZTS {\mathrm{CZTS}} is more efficient comparing to the Si {\mathrm{Si}} . Secondly, with the application of this angle ( 85 ∘ {85^{\circ}} ) in the sputtering process for the CZTS {\mathrm{CZTS}} ( Cu 2 ⁢ ZnSnS 4 {\mathrm{Cu}_{2}\mathrm{Zn}\mathrm{Sn}\mathrm{S}_{4}} ) and CIGS {\mathrm{CIGS}} represented by its chemical formula CuIn x ⁢ Ga ( 1 - x ) ⁢ Se 2 {\mathrm{Cu}\mathrm{In}_{x}\mathrm{Ga}_{(1-x)}\mathrm{Se}_{2}} , and the variation of the bombardment energy in order to find the total ejected atoms from each element of these two materials, we deduce that the sulfide ( S 4 {\mathrm{S}_{4}} ) and selenide ( Se 2 {\mathrm{Se}_{2}} ) elements give the majority of the sputtering yield amount obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用蒙特卡罗方法模拟CZTS、Si和CIGS薄膜的三维溅射
摘要行业发展的未来在很大程度上取决于永久确保的能源需求,只有通过使用各种可持续能源才能实现,其中太阳能通过将其与太阳能电池的特性,特别是与所用半导体衬底的晶体质量联系起来,直接获得最佳利用,是其中之一。许多生长工艺被用来获得高质量的半导体形成和沉积,其中包括DC溅射。在这项工作中,基于蒙特卡罗方法,通过考虑氩气作为真空室轰击气体,提出了CZTS、Si和CIGS半导体薄膜形成的3D DC溅射模拟。我们首先推断出半导体CZTS{\mathrm{CZTS}}和硅的最佳溅射产率,它们的化学式为Cu2 ZnSnS 4{\math rm{Cu}_{2} \mathrm{Zn}\mathrm{Sn}\mathrm{S}_{4} }和Si{\mathrm{Si}}分别通过应用不同的能量和入射角。根据所得结果,我们首先推导出最佳溅射角为85°;同时,CZTS{\mathrm{CZTS}}与Si{\math rm{Si}相比更有效。第二,通过在CZTS{\mathrm{CZTS}}(Cu2 ZnSnS 4{\math rm{Cu}_{2} \mathrm{Zn}\mathrm{Sn}\mathrm{S}_{4} })和由其化学式CuInxGa(1-x)Se2表示的CIGS{In}_{x} \mathrm{Ga}_{(1-x)}\mathrm{Se}_{2} },以及轰击能量的变化,以便找到这两种材料中每种元素的总喷射原子,我们推断硫化物(S4{\mathrm{S}_{4} })和硒化物(Se 2{\mathrm{Se}_{2} })元素给出了所获得的溅射产率的大部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Asymmetric kernel method in the study of strong stability of the PH/M/1 queuing system Random walk on spheres method for solving anisotropic transient diffusion problems and flux calculations Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition On the estimation of periodic signals in the diffusion process using a high-frequency scheme Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1