A computational model for predicting perceived musical expression in branding scenarios

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of New Music Research Pub Date : 2020-06-16 DOI:10.1080/09298215.2020.1778041
Steffen Lepa, Martin Herzog, J. Steffens, Andreas Schoenrock, Hauke Egermann
{"title":"A computational model for predicting perceived musical expression in branding scenarios","authors":"Steffen Lepa, Martin Herzog, J. Steffens, Andreas Schoenrock, Hauke Egermann","doi":"10.1080/09298215.2020.1778041","DOIUrl":null,"url":null,"abstract":"We describe the development of a computational model predicting listener-perceived expressions of music in branding contexts. Representative ground truth from multi-national online listening experiments was combined with machine learning of music branding expert knowledge, and audio signal analysis toolbox outputs. A mixture of random forest and traditional regression models is able to predict average ratings of perceived brand image on four dimensions. Resulting cross-validated prediction accuracy (R²) was Arousal: 61%, Valence: 44%, Authenticity: 55%, and Timeliness: 74%. Audio descriptors for rhythm, instrumentation, and musical style contributed most. Adaptive sub-models for different marketing target groups further increase prediction accuracy.","PeriodicalId":16553,"journal":{"name":"Journal of New Music Research","volume":"49 1","pages":"387 - 402"},"PeriodicalIF":1.1000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09298215.2020.1778041","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Music Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/09298215.2020.1778041","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

We describe the development of a computational model predicting listener-perceived expressions of music in branding contexts. Representative ground truth from multi-national online listening experiments was combined with machine learning of music branding expert knowledge, and audio signal analysis toolbox outputs. A mixture of random forest and traditional regression models is able to predict average ratings of perceived brand image on four dimensions. Resulting cross-validated prediction accuracy (R²) was Arousal: 61%, Valence: 44%, Authenticity: 55%, and Timeliness: 74%. Audio descriptors for rhythm, instrumentation, and musical style contributed most. Adaptive sub-models for different marketing target groups further increase prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个预测品牌场景中感知音乐表达的计算模型
我们描述了一个计算模型的发展,该模型预测了在品牌语境中听众感知的音乐表达。多国在线听力实验的代表性基本事实与音乐品牌专家知识的机器学习和音频信号分析工具箱输出相结合。随机森林和传统回归模型的混合能够在四个维度上预测感知品牌形象的平均评级。结果交叉验证的预测准确率(R²)为唤醒:61%,价:44%,真实性:55%,及时性:74%。节奏、乐器和音乐风格的音频描述符贡献最大。针对不同营销目标群体的自适应子模型进一步提高了预测准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of New Music Research
Journal of New Music Research 工程技术-计算机:跨学科应用
CiteScore
3.20
自引率
0.00%
发文量
5
审稿时长
>12 weeks
期刊介绍: The Journal of New Music Research (JNMR) publishes material which increases our understanding of music and musical processes by systematic, scientific and technological means. Research published in the journal is innovative, empirically grounded and often, but not exclusively, uses quantitative methods. Articles are both musically relevant and scientifically rigorous, giving full technical details. No bounds are placed on the music or musical behaviours at issue: popular music, music of diverse cultures and the canon of western classical music are all within the Journal’s scope. Articles deal with theory, analysis, composition, performance, uses of music, instruments and other music technologies. The Journal was founded in 1972 with the original title Interface to reflect its interdisciplinary nature, drawing on musicology (including music theory), computer science, psychology, acoustics, philosophy, and other disciplines.
期刊最新文献
Data structures for music encoding: tables, trees, and graphs ‘Texting Scarlatti’: unlocking a standard edition with a digital toolkit Detecting chord tone alterations and suspensions Digital critical edition of Čiurlionis' piano music: a case study Tempering the clavier: a corpus-based examination of Bach’s cognition of intonation in the Well-Tempered Clavier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1