Soumaya Grira , Hadil Abu Khalifeh , Mohammad Alkhedher , Mohamad Ramadan
{"title":"3D printing algae-based materials: Pathway towards 4D bioprinting","authors":"Soumaya Grira , Hadil Abu Khalifeh , Mohammad Alkhedher , Mohamad Ramadan","doi":"10.1016/j.bprint.2023.e00291","DOIUrl":null,"url":null,"abstract":"<div><p><span>Algae is a renewable source of various materials that are suitable for 3D printing. Taking a step towards sustainability, the continuously growing industry of 3D printing calls for novel green materials/inks with stable </span>mechanical properties<span>. This paper aims to investigate the 3D printability of algae-based materials and their potential for 4D bioprinting. The sources, printability, and properties of algae-based synthetic polymers, natural hydrogels, and algae cells were reviewed. 4D printability was also explored in terms of hydrogel responsiveness to various types of stimuli and in terms of cell/tissue maturation, and relevant recent progress was reviewed. Results show that PHAs (Polyhydroxyalkanoates) from algae can replace fossil-derived PHAs because they have similar mechanical properties whilst being more environmentally friendly. Algae can also produce a wide range of hydrogel-forming polymers, of which many are already being used as 3D printing inks while others are yet to be developed to suit the printing specifications. Several hydrogels also demonstrate stimuli-responsiveness which make them suitable for 4D printing. Further research is required to overcome the mechanical instability and slow stimuli-responsiveness of natural hydrogels.</span></p></div>","PeriodicalId":72406,"journal":{"name":"","volume":"33 ","pages":"Article e00291"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886623000349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Algae is a renewable source of various materials that are suitable for 3D printing. Taking a step towards sustainability, the continuously growing industry of 3D printing calls for novel green materials/inks with stable mechanical properties. This paper aims to investigate the 3D printability of algae-based materials and their potential for 4D bioprinting. The sources, printability, and properties of algae-based synthetic polymers, natural hydrogels, and algae cells were reviewed. 4D printability was also explored in terms of hydrogel responsiveness to various types of stimuli and in terms of cell/tissue maturation, and relevant recent progress was reviewed. Results show that PHAs (Polyhydroxyalkanoates) from algae can replace fossil-derived PHAs because they have similar mechanical properties whilst being more environmentally friendly. Algae can also produce a wide range of hydrogel-forming polymers, of which many are already being used as 3D printing inks while others are yet to be developed to suit the printing specifications. Several hydrogels also demonstrate stimuli-responsiveness which make them suitable for 4D printing. Further research is required to overcome the mechanical instability and slow stimuli-responsiveness of natural hydrogels.