{"title":"Scalar Curvature via Local Extent","authors":"G. Veronelli","doi":"10.1515/agms-2018-0008","DOIUrl":null,"url":null,"abstract":"Abstract We give a metric characterization of the scalar curvature of a smooth Riemannian manifold, analyzing the maximal distance between (n + 1) points in infinitesimally small neighborhoods of a point. Since this characterization is purely in terms of the distance function, it could be used to approach the problem of defining the scalar curvature on a non-smooth metric space. In the second part we will discuss this issue, focusing in particular on Alexandrov spaces and surfaces with bounded integral curvature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2018-0008","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2018-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract We give a metric characterization of the scalar curvature of a smooth Riemannian manifold, analyzing the maximal distance between (n + 1) points in infinitesimally small neighborhoods of a point. Since this characterization is purely in terms of the distance function, it could be used to approach the problem of defining the scalar curvature on a non-smooth metric space. In the second part we will discuss this issue, focusing in particular on Alexandrov spaces and surfaces with bounded integral curvature.