Forecasting GDP growth rates in the United States and Brazil using Google Trends

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-10-01 DOI:10.1016/j.ijforecast.2022.10.003
Evripidis Bantis, Michael P. Clements, Andrew Urquhart
{"title":"Forecasting GDP growth rates in the United States and Brazil using Google Trends","authors":"Evripidis Bantis,&nbsp;Michael P. Clements,&nbsp;Andrew Urquhart","doi":"10.1016/j.ijforecast.2022.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider the value of Google Trends search data for nowcasting (and forecasting) GDP growth for a developed economy (the U.S.) and an emerging-market economy (Brazil). Our focus is on the marginal contribution of big data in the form of Google Trends data over and above that of traditional predictors, and we use a dynamic factor model to handle the large number of potential predictors and the “ragged-edge” problem. We find that factor models based on economic indicators and Google “categories” data provide gains compared to models that exclude this information. The benefits of using Google Trends data appear to be broadly similar for Brazil and the U.S., and depend on the factor model variable-selection strategy. Using more disaggregated Google Trends data than its “categories” is not beneficial.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"39 4","pages":"Pages 1909-1924"},"PeriodicalIF":6.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207022001418","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we consider the value of Google Trends search data for nowcasting (and forecasting) GDP growth for a developed economy (the U.S.) and an emerging-market economy (Brazil). Our focus is on the marginal contribution of big data in the form of Google Trends data over and above that of traditional predictors, and we use a dynamic factor model to handle the large number of potential predictors and the “ragged-edge” problem. We find that factor models based on economic indicators and Google “categories” data provide gains compared to models that exclude this information. The benefits of using Google Trends data appear to be broadly similar for Brazil and the U.S., and depend on the factor model variable-selection strategy. Using more disaggregated Google Trends data than its “categories” is not beneficial.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用谷歌趋势预测美国和巴西的GDP增长率
在本文中,我们考虑了谷歌趋势搜索数据对发达经济体(美国)和新兴市场经济体(巴西)的临近预测(和预测)GDP增长的价值。我们的重点是谷歌趋势数据形式的大数据对传统预测器的边际贡献,我们使用一个动态因子模型来处理大量潜在的预测器和“边缘”问题。我们发现,基于经济指标和谷歌“类别”数据的因素模型比排除这些信息的模型更有优势。在巴西和美国,使用谷歌趋势数据的好处似乎大致相似,这取决于因素模型变量选择策略。使用比“分类”更多的分类谷歌趋势数据是没有好处的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
Editorial Board Editorial Board Locally tail-scale invariant scoring rules for evaluation of extreme value forecasts Conditionally optimal weights and forward-looking approaches to combining forecasts A loss discounting framework for model averaging and selection in time series models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1