The simulation for ultrasonic testing based on frequency-phase coded excitation

Xinyu Zhao, Jiaying Zhang, S. Cong, T. Gang
{"title":"The simulation for ultrasonic testing based on frequency-phase coded excitation","authors":"Xinyu Zhao, Jiaying Zhang, S. Cong, T. Gang","doi":"10.1504/IJCMSSE.2019.10023225","DOIUrl":null,"url":null,"abstract":"Large time-bandwidth product coded signal and pulse compression are introduced into ultrasonic testing. Linear frequency modulation (LFM) excitation is usually used to improve time resolution, but sidelobe should be suppressed to detect smaller flaws nearby. Barker coded excitation is usually used to suppress sidelobe, but time resolution of results is lower than LFM excitation. So frequency-phase coded excitation is proposed to obtain higher time resolution and lower sidelobe level. The proposed excitation signal is applying LFM to each sub-pulse of Barker code, and it is called LFM-B13. The results of simulations demonstrate that, time resolution of LFM-B13 excitation is approximately 40% higher than that of LFM excitation, and main sidelobe level of LFM-B13 excitation is approximately 4 dB lower than that of LFM excitation, when 60% bandwidth of 5 MHz central frequency transducers are used.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCMSSE.2019.10023225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

Large time-bandwidth product coded signal and pulse compression are introduced into ultrasonic testing. Linear frequency modulation (LFM) excitation is usually used to improve time resolution, but sidelobe should be suppressed to detect smaller flaws nearby. Barker coded excitation is usually used to suppress sidelobe, but time resolution of results is lower than LFM excitation. So frequency-phase coded excitation is proposed to obtain higher time resolution and lower sidelobe level. The proposed excitation signal is applying LFM to each sub-pulse of Barker code, and it is called LFM-B13. The results of simulations demonstrate that, time resolution of LFM-B13 excitation is approximately 40% higher than that of LFM excitation, and main sidelobe level of LFM-B13 excitation is approximately 4 dB lower than that of LFM excitation, when 60% bandwidth of 5 MHz central frequency transducers are used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频率相位编码激励的超声检测仿真
将大时宽乘积编码信号和脉冲压缩技术引入超声检测中。线性调频(LFM)激励通常用于提高时间分辨率,但应抑制旁瓣以检测附近较小的缺陷。巴克编码激励通常用于抑制旁瓣,但结果的时间分辨率低于线性调频激励。因此,为了获得更高的时间分辨率和更低的旁瓣电平,提出了频率相位编码激励。所提出的激励信号是将LFM应用于巴克码的每个子脉冲,它被称为LFM-B13。仿真结果表明,当使用60%带宽的5MHz中心频率换能器时,LFM-B13激励的时间分辨率比LFM激励高出约40%,LFM-B1 3激励的主旁瓣电平比LFM激发低约4dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
3
期刊介绍: IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.
期刊最新文献
Predicting the tensile behaviour of friction stir welded AA2024 and AA5083 alloy based on artificial neural network and mayfly optimization algorithm Corrosion estimation of Cu and Br based automotive parts exposed to biodiesel environment : Case of RSM and ANN Improving engine's lubrication based on optimized partial micro-textures Contribution of Electrical Resistivity Tomography to the Anticipation of Potential Disasters: Case of Pipe Ramming Works Under Road Embankments Numerical simulation of SiC crystal growth during physical vapor transport using the lattice Boltzmann - phase field model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1