C. Bentz, Marie-Christine Costa, Pierre-Louis Poirion, Thomas Ridremont
{"title":"Robust capacitated Steiner trees and networks with uniform demands","authors":"C. Bentz, Marie-Christine Costa, Pierre-Louis Poirion, Thomas Ridremont","doi":"10.1002/net.22143","DOIUrl":null,"url":null,"abstract":"We are interested in the design of robust (or resilient) capacitated rooted Steiner networks in the case of terminals with uniform demands. Formally, we are given a graph, capacity, and cost functions on the edges, a root, a subset of vertices called terminals, and a bound k$$ k $$ on the number of possible edge failures. We first study the problem where k=1$$ k=1 $$ and the network that we want to design must be a tree covering the root and the terminals: we give complexity results and propose models to optimize both the cost of the tree and the number of terminals disconnected from the root in the worst case of an edge failure, while respecting the capacity constraints on the edges. Secondly, we consider the problem of computing a minimum‐cost survivable network, that is, a network that covers the root and terminals even after the removal of any k$$ k $$ edges, while still respecting the capacity constraints on the edges. We also consider the possibility of protecting a given number of edges. We propose three different formulations: a bilevel formulation (with an attacker and a defender), a cutset‐based formulation and a flow‐based one. We compare the formulations from a theoretical point of view, and we propose algorithms to solve them and compare their efficiency in practice.","PeriodicalId":54734,"journal":{"name":"Networks","volume":"82 1","pages":"3 - 31"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/net.22143","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
We are interested in the design of robust (or resilient) capacitated rooted Steiner networks in the case of terminals with uniform demands. Formally, we are given a graph, capacity, and cost functions on the edges, a root, a subset of vertices called terminals, and a bound k$$ k $$ on the number of possible edge failures. We first study the problem where k=1$$ k=1 $$ and the network that we want to design must be a tree covering the root and the terminals: we give complexity results and propose models to optimize both the cost of the tree and the number of terminals disconnected from the root in the worst case of an edge failure, while respecting the capacity constraints on the edges. Secondly, we consider the problem of computing a minimum‐cost survivable network, that is, a network that covers the root and terminals even after the removal of any k$$ k $$ edges, while still respecting the capacity constraints on the edges. We also consider the possibility of protecting a given number of edges. We propose three different formulations: a bilevel formulation (with an attacker and a defender), a cutset‐based formulation and a flow‐based one. We compare the formulations from a theoretical point of view, and we propose algorithms to solve them and compare their efficiency in practice.
期刊介绍:
Network problems are pervasive in our modern technological society, as witnessed by our reliance on physical networks that provide power, communication, and transportation. As well, a number of processes can be modeled using logical networks, as in the scheduling of interdependent tasks, the dating of archaeological artifacts, or the compilation of subroutines comprising a large computer program. Networks provide a common framework for posing and studying problems that often have wider applicability than their originating context.
The goal of this journal is to provide a central forum for the distribution of timely information about network problems, their design and mathematical analysis, as well as efficient algorithms for carrying out optimization on networks. The nonstandard modeling of diverse processes using networks and network concepts is also of interest. Consequently, the disciplines that are useful in studying networks are varied, including applied mathematics, operations research, computer science, discrete mathematics, and economics.
Networks publishes material on the analytic modeling of problems using networks, the mathematical analysis of network problems, the design of computationally efficient network algorithms, and innovative case studies of successful network applications. We do not typically publish works that fall in the realm of pure graph theory (without significant algorithmic and modeling contributions) or papers that deal with engineering aspects of network design. Since the audience for this journal is then necessarily broad, articles that impact multiple application areas or that creatively use new or existing methodologies are especially appropriate. We seek to publish original, well-written research papers that make a substantive contribution to the knowledge base. In addition, tutorial and survey articles are welcomed. All manuscripts are carefully refereed.