Finite-Element Simulation of Electroosmotic Mixing: A Study of the Simultaneous Effects of Working Parameters for Optimization

IF 2.3 4区 工程技术 Q3 ENGINEERING, CHEMICAL International Journal of Chemical Engineering Pub Date : 2022-10-19 DOI:10.1155/2022/9957189
Reza Kalantar Feeoj, Sayed Masoud Alavi Eshkaftaki, Iman Kazemi Asfeh, M. Jahangiri
{"title":"Finite-Element Simulation of Electroosmotic Mixing: A Study of the Simultaneous Effects of Working Parameters for Optimization","authors":"Reza Kalantar Feeoj, Sayed Masoud Alavi Eshkaftaki, Iman Kazemi Asfeh, M. Jahangiri","doi":"10.1155/2022/9957189","DOIUrl":null,"url":null,"abstract":"Micromixers are crucial parts of microfluidic systems when it comes to efficiency and precision, as mixing is the central process in most relevant applications, including medical diagnosis, chemical production, and drug discovery. In view of the importance of improving the mixing quality, for the first time, the present work investigates the simultaneous effects of mixing chamber geometry (circular, hexagonal, and octagonal), electric field frequency (5, 7, 10, and 15 Hz), inlet velocity (0.1-0.2 mm·s−1), and phase difference (0-π) on the flow inside an electroosmotic micromixer using the finite-element tool COMSOL Multiphysics 5.4 to optimize the process and achieve homogeneous mixing. The flow-field, concentration-field, and electric-field equations were coupled and solved simultaneously. The results of this research indicated that at a given inlet velocity and a specific frequency range, as frequency increases, more mixing occurs in a smaller chamber, and as the inlet velocity increases, more mixing occurs in a smaller chamber at a higher frequency. Moreover, the highest mixing level (98.16%) was obtained with a 0.1 mm·s−1 inlet velocity, 10 Hz frequency, and π/2 phase difference in a hexagonal chamber.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/9957189","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Micromixers are crucial parts of microfluidic systems when it comes to efficiency and precision, as mixing is the central process in most relevant applications, including medical diagnosis, chemical production, and drug discovery. In view of the importance of improving the mixing quality, for the first time, the present work investigates the simultaneous effects of mixing chamber geometry (circular, hexagonal, and octagonal), electric field frequency (5, 7, 10, and 15 Hz), inlet velocity (0.1-0.2 mm·s−1), and phase difference (0-π) on the flow inside an electroosmotic micromixer using the finite-element tool COMSOL Multiphysics 5.4 to optimize the process and achieve homogeneous mixing. The flow-field, concentration-field, and electric-field equations were coupled and solved simultaneously. The results of this research indicated that at a given inlet velocity and a specific frequency range, as frequency increases, more mixing occurs in a smaller chamber, and as the inlet velocity increases, more mixing occurs in a smaller chamber at a higher frequency. Moreover, the highest mixing level (98.16%) was obtained with a 0.1 mm·s−1 inlet velocity, 10 Hz frequency, and π/2 phase difference in a hexagonal chamber.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电渗混合的有限元模拟:优化工作参数同时影响的研究
在效率和精度方面,微混合器是微流体系统的关键部分,因为混合是大多数相关应用的中心过程,包括医学诊断、化学生产和药物发现。鉴于提高混合质量的重要性,本工作首次研究了混合室几何形状(圆形、六边形和八角形)、电场频率(5、7、10和15 Hz),入口速度(0.1-0.2 mm·s−1)和相差(0-π)对电渗微混合器内部流动的影响,以优化过程并实现均匀混合。对流场、浓度场和电场方程进行了耦合求解。这项研究的结果表明,在给定的入口速度和特定的频率范围内,随着频率的增加,较小的腔室中会发生更多的混合,而随着入口速度的增加,较高频率下较小的腔室会发生更多混合。此外,0.1 mm·s−1入口速度,10 Hz频率和π/2相位差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Chemical Engineering
International Journal of Chemical Engineering Chemical Engineering-General Chemical Engineering
CiteScore
4.00
自引率
3.70%
发文量
95
审稿时长
14 weeks
期刊介绍: International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures. As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
A Review of Stochastic Optimization Algorithms Applied in Food Engineering Analysis Study of Available Alternatives for Mitigation of Aromatic Hydrocarbon Emissions from a Glycol Dehydration Unit Effective Removal of Ibuprofen from Aqueous Solution Using Cationic Surface-Active Agents in Dissolved Air-Flotation Process Effect of inside Surface Baffle Conditions on Just Drawdown Impeller Rotational Speed A Study on the Valorization of Rice Straw into Different Value-Added Products and Biofuels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1