Interfacing anoxic Shewanella oneidensis biofilms with electrically conducting nanostructures

Biofilms Pub Date : 2020-07-01 DOI:10.5194/biofilms9-139
Edina Klein, René Wurst, David Rehnlund, J. Gescher
{"title":"Interfacing anoxic Shewanella oneidensis biofilms with electrically conducting nanostructures","authors":"Edina Klein, René Wurst, David Rehnlund, J. Gescher","doi":"10.5194/biofilms9-139","DOIUrl":null,"url":null,"abstract":"<p><em>Shewanella oneidensis</em> MR1 is the best understood model organism with regards to dissimilatory metal reduction and extracellular electron transfer onto carbon electrodes in bioelectrochemical systems (BES)<sup>1</sup>. However, under anoxic conditions <em>S. oneidensis</em> is known to form very thin biofilms resulting in low current density output. In contrast, another exoelectrogenic model organism <em>Geobacter surfurreduscens</em> can form electroactive biofilms up to 100 &#181;m in thickness. This organism is known for its ability to transport electrons over a long range (> 10 &#181;m) along a network of protein filaments, called microbial nanowires. Although still controversial, it was recently reported that OmcS has a special importance for the conductivity of these nanowires<sup>2</sup>. One of the key differences between <em>G. surfurreduscens</em> and <em>S. oneidensis</em> lies in how cell-to-cell electronic communication occurs, which dictate the range of electronic communication between distant cells. <em>S. oneidensis</em> relies on direct cell-to-cell communication via electron transfer between outer membrane cytochromes or via soluble redox active flavins that are secreted by the cells<sup>3</sup>. Our research is based on the question, what if the <em>S. oneidensis</em> biofilm formation could be improved by introducing an artificial electronic network, similar to the native microbial nanowires for <em>G. sulfurreducens</em>?</p>\n<p>We hypothesize that synthetic biofilms containing conductive nanostructure additives would allow <em>S. oneidensis</em> to build multilayer thick biofilms under anoxic conditions on solid electron acceptors. To answer this question of how conductive materials affect the formation of anoxic <em>S. oneidensis</em> biofilms, we integrated both biological and synthetic conductive nanostructures into these biofilms. As biological additive, the <em>c</em>-type cytochrome OmcS purified from<em> G. sulfurreducens</em> was utilized. As synthetic additives, both commercially available biotinylated gold nanorods and in-house electrochemically synthesized metal nanostructures were added to anoxic <em>S.&#160;oneidensis</em> biofilms.</p>\n<p>Cultivation and characterization of the biofilms was performed using our newly developed microfluidic bioelectrochemical platform. Microbial cultivation with the aid of microfluidic flow chambers has a great potential to form biofilms on an easy to handle laboratory scale with simultaneously ongoing multianalytical analysis<sup>4</sup>. In our bioelectrochemical microfluidic, system <em>S. oneidensis</em> biofilms can be grown under anoxic conditions using an anode as sole electron acceptor. The growth behavior and bioelectrochemical performance was evaluated by a combination of electrochemical techniques (chronoamperometry, electrochemical impedance spectroscopy, cyclic voltammetry) and optical analyses (confocal laser scanning microscopy and optical coherence tomography). The strategy of conductive nanostructured additives for improved electroactive biofilm formation could be an important tool for other exoelectrogenic microorganisms in order to exploit their physiological abilities for biotechnology.</p>\n<p>References:</p>\n<ol>\n<li>Beblawy, S. <em>et al</em>. (2018) <em>Molecular Microbiology</em> <strong>109</strong>: 571-583.</li>\n<li>Wang, F. <em>et al</em>. (2019) <em>Cell </em><strong>177</strong>: 361&#8208;369.</li>\n<li>Shi, L. <em>et al</em>. (2016) <em>Nature Reviews Microbiology</em> <strong>14</strong>: 651-662.</li>\n<li>Hansen, S.H. <em>et al</em>. (2019) <em>Scientific Reports</em> <strong>9</strong>: 8933.</li>\n</ol>\n<p>&#160;</p>","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/biofilms9-139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Shewanella oneidensis MR1 is the best understood model organism with regards to dissimilatory metal reduction and extracellular electron transfer onto carbon electrodes in bioelectrochemical systems (BES)1. However, under anoxic conditions S. oneidensis is known to form very thin biofilms resulting in low current density output. In contrast, another exoelectrogenic model organism Geobacter surfurreduscens can form electroactive biofilms up to 100 µm in thickness. This organism is known for its ability to transport electrons over a long range (> 10 µm) along a network of protein filaments, called microbial nanowires. Although still controversial, it was recently reported that OmcS has a special importance for the conductivity of these nanowires2. One of the key differences between G. surfurreduscens and S. oneidensis lies in how cell-to-cell electronic communication occurs, which dictate the range of electronic communication between distant cells. S. oneidensis relies on direct cell-to-cell communication via electron transfer between outer membrane cytochromes or via soluble redox active flavins that are secreted by the cells3. Our research is based on the question, what if the S. oneidensis biofilm formation could be improved by introducing an artificial electronic network, similar to the native microbial nanowires for G. sulfurreducens?

We hypothesize that synthetic biofilms containing conductive nanostructure additives would allow S. oneidensis to build multilayer thick biofilms under anoxic conditions on solid electron acceptors. To answer this question of how conductive materials affect the formation of anoxic S. oneidensis biofilms, we integrated both biological and synthetic conductive nanostructures into these biofilms. As biological additive, the c-type cytochrome OmcS purified from G. sulfurreducens was utilized. As synthetic additives, both commercially available biotinylated gold nanorods and in-house electrochemically synthesized metal nanostructures were added to anoxic S. oneidensis biofilms.

Cultivation and characterization of the biofilms was performed using our newly developed microfluidic bioelectrochemical platform. Microbial cultivation with the aid of microfluidic flow chambers has a great potential to form biofilms on an easy to handle laboratory scale with simultaneously ongoing multianalytical analysis4. In our bioelectrochemical microfluidic, system S. oneidensis biofilms can be grown under anoxic conditions using an anode as sole electron acceptor. The growth behavior and bioelectrochemical performance was evaluated by a combination of electrochemical techniques (chronoamperometry, electrochemical impedance spectroscopy, cyclic voltammetry) and optical analyses (confocal laser scanning microscopy and optical coherence tomography). The strategy of conductive nanostructured additives for improved electroactive biofilm formation could be an important tool for other exoelectrogenic microorganisms in order to exploit their physiological abilities for biotechnology.

References:

  1. Beblawy, S. et al. (2018) Molecular Microbiology 109: 571-583.
  2. Wang, F. et al. (2019) Cell 177: 361‐369.
  3. Shi, L. et al. (2016) Nature Reviews Microbiology 14: 651-662.
  4. Hansen, S.H. et al. (2019) Scientific Reports 9: 8933.

 

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用导电纳米结构连接缺氧的希瓦氏菌生物膜
在生物电化学系统(BES)中,关于异化金属还原和细胞外电子转移到碳电极上,希瓦氏杆菌MR1是最被理解的模式生物。然而,在缺氧条件下,已知双歧杆菌形成非常薄的生物膜,导致低电流密度输出。相比之下,另一种产电模式生物地杆菌可以形成厚达100 µm的电活性生物膜。这种生物以其沿着称为微生物纳米线的蛋白质细丝网络长距离(bbb10 µm)传输电子的能力而闻名。尽管仍有争议,但最近有报道称,OmcS对这些纳米线的导电性具有特殊的重要性2。野田鼠和野田鼠之间的关键区别之一在于细胞间电子通信的发生方式,这决定了远距离细胞之间电子通信的范围。黄酮类化合物依赖于细胞间的直接通信,通过外膜细胞色素之间的电子传递或通过细胞分泌的可溶性氧化还原活性黄素。我们的研究是基于这样一个问题,如果通过引入人工电子网络来改善S. oneidensis生物膜的形成,类似于G.硫还原菌的天然微生物纳米线,会怎么样?我们假设含有导电纳米结构添加剂的合成生物膜将允许s.o oneidensis在固体电子受体的缺氧条件下构建多层厚生物膜。为了回答这个问题,导电材料如何影响缺氧的一叶草生物膜的形成,我们将生物和合成导电纳米结构整合到这些生物膜中。从硫还原菌中纯化的c型细胞色素OmcS作为生物添加剂。作为合成添加剂,将市售的生物素化金纳米棒和内部电化学合成的金属纳米结构添加到缺氧的S. oneidensis生物膜中。利用我们新开发的微流控生物电化学平台进行了生物膜的培养和表征。借助微流控流室进行微生物培养具有很大的潜力,可以在易于处理的实验室规模上形成生物膜,同时进行多分析分析。在我们的生物电化学微流体中,用阳极作为唯一的电子受体,可以在缺氧条件下生长系统线虫生物膜。通过电化学技术(计时安培法、电化学阻抗谱、循环伏安法)和光学分析(共聚焦激光扫描显微镜和光学相干层析成像)的结合来评估生长行为和生物电化学性能。导电纳米结构添加剂改善电活性生物膜形成的策略可以为其他外电生微生物开发其生物技术生理能力提供重要工具。参考文献:Beblawy, S. et .(2018)分子微生物学109:571-583。王峰等。(2019)Cell 177: 361‐369。石磊,等。(2016)自然评论微生物学14:651-662。Hansen, S.H.等(2019)科学报告9:8933. 
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Global analyses imply that Stenotrophomonas maltophilia biofilms are phenotypically highly diverse despite a common transcriptome profile BiofilmQ, a software tool for quantiative image analysis of microbial biofilm communities Monitoring and quantification of bioelectrochemical biofilms by means of OCT in novel and customized reactor-setups Biofilm and productivity-associated community changes in serial-transfer experiments in heterogeneous liquid microcosms Heterogeneities in biofilms from clinical isolates under flow conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1