Erwin Michel Davila-Iniesta, Santiago Guerrero-Gonzalez, Jorge Santiago-Amaya, Paola Castillo-Juárez, Luis Niño-de-Rivera-Oyarzabal
{"title":"False Color Method for Retinal Oximetry","authors":"Erwin Michel Davila-Iniesta, Santiago Guerrero-Gonzalez, Jorge Santiago-Amaya, Paola Castillo-Juárez, Luis Niño-de-Rivera-Oyarzabal","doi":"10.4236/jbise.2019.1212044","DOIUrl":null,"url":null,"abstract":"Oximetry is a method for measuring the oxygen saturation of haemoglobin in blood. Particularly, retinal oximetry based in the measurement of oxygen saturation in retinal vessels has acquired great interest to gather information on blood oxygenation from said vessels within inner and outer retina. Non-invasive spectrophotometric retinal oximetry has been studied for over five decades based on imaging spectroscopy. However, Optical Coherence Tomography (OCT) is an alternative to analyze the absorption difference between oxyhaemoglobin (HbO2) and deoxyhaemoglobin (Hb) in the retinal vessels and the choroidal structure. We propose in this paper an alternative process to manipulate conventional OCT images to evaluate changes in the relative haemoglobin oxygen saturation. Conventional OCT images from 570 nm and 600 nm in gray scale are converted to a corresponding color scale to be compared to the oxygenation information involved in the original gray scale OCT images.","PeriodicalId":64231,"journal":{"name":"生物医学工程(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/jbise.2019.1212044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Oximetry is a method for measuring the oxygen saturation of haemoglobin in blood. Particularly, retinal oximetry based in the measurement of oxygen saturation in retinal vessels has acquired great interest to gather information on blood oxygenation from said vessels within inner and outer retina. Non-invasive spectrophotometric retinal oximetry has been studied for over five decades based on imaging spectroscopy. However, Optical Coherence Tomography (OCT) is an alternative to analyze the absorption difference between oxyhaemoglobin (HbO2) and deoxyhaemoglobin (Hb) in the retinal vessels and the choroidal structure. We propose in this paper an alternative process to manipulate conventional OCT images to evaluate changes in the relative haemoglobin oxygen saturation. Conventional OCT images from 570 nm and 600 nm in gray scale are converted to a corresponding color scale to be compared to the oxygenation information involved in the original gray scale OCT images.