Behavior of High-plasticity Clay Stabilized with Lime and Rice Husk Ash

IF 0.2 Q4 ENGINEERING, MULTIDISCIPLINARY Makara Journal of Technology Pub Date : 2021-12-30 DOI:10.7454/mst.v25i3.3580
F. Fatnanta, Andarsin Ongko, Adnan Ihsan
{"title":"Behavior of High-plasticity Clay Stabilized with Lime and Rice Husk Ash","authors":"F. Fatnanta, Andarsin Ongko, Adnan Ihsan","doi":"10.7454/mst.v25i3.3580","DOIUrl":null,"url":null,"abstract":"Soil is an important and fundamental element for building and road construction. However, poor properties of soil can affect the entire construction since the soil will resist the loads transferred from the upper structures. Additives such as cement, lime, and rice husk ash (RHA) can be used as stabilization materials to increase soil strength. This study examined the behavior of stabilized plastic clay mixed with cement, lime, and RHA. The clay stabilization success rate can be measured by the California Bearing Ratio (CBR), unconfined compression strength, and swelling potential. In this study, different mixtures were prepared as samples and tested under various loads: 1, 2, 3, 4, and 5 kPa. The results indicated that the addition of cement, lime, and RHA could effectively reduce the swelling potential of clay. The mixture variations of soil–cement composite 90% + RHA 10% and soil–cement composite 90% + lime 4% + RHA 6% showed the lowest swelling rate.","PeriodicalId":42980,"journal":{"name":"Makara Journal of Technology","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Makara Journal of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/mst.v25i3.3580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Soil is an important and fundamental element for building and road construction. However, poor properties of soil can affect the entire construction since the soil will resist the loads transferred from the upper structures. Additives such as cement, lime, and rice husk ash (RHA) can be used as stabilization materials to increase soil strength. This study examined the behavior of stabilized plastic clay mixed with cement, lime, and RHA. The clay stabilization success rate can be measured by the California Bearing Ratio (CBR), unconfined compression strength, and swelling potential. In this study, different mixtures were prepared as samples and tested under various loads: 1, 2, 3, 4, and 5 kPa. The results indicated that the addition of cement, lime, and RHA could effectively reduce the swelling potential of clay. The mixture variations of soil–cement composite 90% + RHA 10% and soil–cement composite 90% + lime 4% + RHA 6% showed the lowest swelling rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石灰和稻壳灰稳定高塑性粘土的行为
土壤是建筑和道路建设的重要和基本元素。然而,土壤性质差会影响整个施工,因为土壤会抵抗从上部结构传递的荷载。水泥、石灰和稻壳灰(RHA)等添加剂可以用作稳定材料,以提高土壤强度。本研究考察了掺有水泥、石灰和RHA的稳定塑性粘土的性能。粘土稳定成功率可以通过加州承载比(CBR)、无侧限抗压强度和膨胀潜能来衡量。在本研究中,制备了不同的混合物作为样品,并在不同的载荷下进行了测试:1、2、3、4和5kPa。结果表明,水泥、石灰和RHA的加入可以有效地降低粘土的膨胀潜力。土-水泥复合材料90%+RHA 10%和土-水泥混合材料90%+石灰4%+RHA 6%的混合料膨胀率最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Makara Journal of Technology
Makara Journal of Technology ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
13
审稿时长
20 weeks
期刊最新文献
Optimization of the Building Envelope and Roof Shading to Reduce the Energy Consumption of College Low-Rise Buildings in Indonesia Briquette of Empty Fruit Bunch Fiber as an Alternative Substitution for Binderless Fuel Methods Heat Transfer Enhancement in Nanofluid Flows Augmented by Magnetic Flux Isolation and Characterization of Caffeine-Degrading Bacteria from Coffee Plantation Areas in Malaysia Effect of Lime Content, Curing Temperature, and Aging Condition on Low-Alkaline Concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1