Plasma meets metamaterials: Three ways to advance space micropropulsion systems

IF 7.7 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Advances in Physics: X Pub Date : 2021-01-01 DOI:10.1080/23746149.2020.1834452
I. Levchenko, Shuyan Xu, O. Cherkun, O. Baranov, K. Bazaka
{"title":"Plasma meets metamaterials: Three ways to advance space micropropulsion systems","authors":"I. Levchenko, Shuyan Xu, O. Cherkun, O. Baranov, K. Bazaka","doi":"10.1080/23746149.2020.1834452","DOIUrl":null,"url":null,"abstract":"ABSTRACT Plasma and metamaterials: what new advances in space micro-propulsion systems can they bring when used together? The aim of this concise review article is to attract attention of the space propulsion scientists and engineers, along with experts working in the fields of micro-machines, optics, communication, and other hi-tech devices, to the opportunities that arise from different possible combinations of plasma and metamaterials. Along with plasma-based techniques used for the fabrication of complex metamaterials, we examine two unusual plasma/metamaterial systems, namely when plasma interacts with a metamaterial, and when plasma itself features some properties of a metamaterial. The fundamental physics behind the principal processes that define the behavior of these systems is briefly outlined. Possible applications in space technology, mainly for micro-propulsion systems for Cubesats and small satellites are also sketched.","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23746149.2020.1834452","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2020.1834452","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

Abstract

ABSTRACT Plasma and metamaterials: what new advances in space micro-propulsion systems can they bring when used together? The aim of this concise review article is to attract attention of the space propulsion scientists and engineers, along with experts working in the fields of micro-machines, optics, communication, and other hi-tech devices, to the opportunities that arise from different possible combinations of plasma and metamaterials. Along with plasma-based techniques used for the fabrication of complex metamaterials, we examine two unusual plasma/metamaterial systems, namely when plasma interacts with a metamaterial, and when plasma itself features some properties of a metamaterial. The fundamental physics behind the principal processes that define the behavior of these systems is briefly outlined. Possible applications in space technology, mainly for micro-propulsion systems for Cubesats and small satellites are also sketched.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体与超材料:推进空间微推进系统的三种方法
等离子体和超材料:当它们一起使用时,会给空间微推进系统带来哪些新进展?这篇简明的综述文章的目的是引起空间推进科学家和工程师的注意,以及在微机械、光学、通信和其他高科技设备领域工作的专家,注意等离子体和超材料的不同可能组合所带来的机会。随着等离子体技术用于制造复杂的超材料,我们研究了两种不寻常的等离子体/超材料系统,即当等离子体与超材料相互作用时,以及当等离子体本身具有超材料的某些特性时。简要概述了定义这些系统行为的主要过程背后的基本物理学。还概述了空间技术的可能应用,主要是用于立方体卫星和小型卫星的微型推进系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Physics: X
Advances in Physics: X Physics and Astronomy-General Physics and Astronomy
CiteScore
13.60
自引率
0.00%
发文量
37
审稿时长
13 weeks
期刊介绍: Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including: Chemistry Materials Science Engineering Biology Medicine
期刊最新文献
Orbital angular momentum of Bloch electrons: equilibrium formulation, magneto-electric phenomena, and the orbital Hall effect Fundamental physics and other applications using nonneutral plasma Performance limits of information engines Insight into the interactions of fullerenes with biological membranes through molecular dynamics simulations 3D assembly of Janus spheres: potentials, dynamics, and experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1