Urban Classification from Aerial and Satellite Images

IF 1 Q4 ENGINEERING, CIVIL Journal of Applied Engineering Sciences Pub Date : 2020-11-11 DOI:10.2478/jaes-2020-0024
I. M. Pârvu, Iuliana Adriana Cuibac Picu, P. Dragomir, D. Poli
{"title":"Urban Classification from Aerial and Satellite Images","authors":"I. M. Pârvu, Iuliana Adriana Cuibac Picu, P. Dragomir, D. Poli","doi":"10.2478/jaes-2020-0024","DOIUrl":null,"url":null,"abstract":"Abstract When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in this field demonstrated that for the image classification process is still place for improvement. From satellites are obtained multispectral images with more bands (e.g. Landsat 7/8 has 36 spectral bands). This paper will present the differences between these two types of images and the classification results using support-vector machine and maximum likelihood classifier. For the aerial and the satellite images we used different sets of classification classes and the two methods mentioned above to highlight the importance of choosing the classes and the classification method.","PeriodicalId":44808,"journal":{"name":"Journal of Applied Engineering Sciences","volume":"10 1","pages":"163 - 172"},"PeriodicalIF":1.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jaes-2020-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in this field demonstrated that for the image classification process is still place for improvement. From satellites are obtained multispectral images with more bands (e.g. Landsat 7/8 has 36 spectral bands). This paper will present the differences between these two types of images and the classification results using support-vector machine and maximum likelihood classifier. For the aerial and the satellite images we used different sets of classification classes and the two methods mentioned above to highlight the importance of choosing the classes and the classification method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于航空和卫星图像的城市分类
在讨论土地覆盖时,我们需要找到一种合适的方法从航空或卫星图像中提取信息。在摄影测量领域,航空图像通常是由光学传感器获取的,光学传感器提供四个波段(红、绿、蓝和近红外)的图像。近年来在该领域的研究表明,对于图像的分类处理仍有有待改进的地方。从卫星获得的多光谱图像具有更多的波段(例如Landsat 7/8有36个光谱波段)。本文将介绍这两类图像之间的差异以及使用支持向量机和最大似然分类器的分类结果。对于航空和卫星图像,我们使用了不同的分类类别集和上述两种方法,以突出选择类别和分类方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
9.10%
发文量
18
审稿时长
12 weeks
期刊最新文献
Experimental Investigation of High-Force-To-Volume Extrusion Damper Subjected to Cyclic and Time History Loading Structural Analysis of Historical Cantilevered Stone Staircases Simulation and Analysis of a Solar Cooling System Atmospheric Pollutant Dispersion Modeling Methods Optimizing Local Resources in Pakistan to Produce High-Strength Reactive Powder Concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1