{"title":"Lead biosorption profiling of endophytic Aspergillus flavus SGE34 isolated from Cleome viscosa Linn.","authors":"Samiksha Sharma, Kishan Lal Tiwari, Shailesh Kumar Jadhav","doi":"10.1080/02757540.2023.2253224","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n Lead is an environmental pollutant that causes remarkable damage to various organs in the human body, especially the nervous system. Removal of lead by conventional methods is costly, and therefore, in the current scenario, biosorption using fungi is extensively explored as they provide good metal uptake systems. The present study evaluated the Pb (II) biosorption potential of endophytic fungi Aspergillus flavus SGE34. The fungal isolate was obtained from the root of an indigenous medicinal plant of the Chhattisgarh region named Cleome viscosa Linn. The biosorption potential of dead fungal biomass was optimized at different operating parameters like contact time, pH, and temperature. The maximum biosorption values were found at pH 6.0 with an equilibrium time of 150 minutes at 350C. The Fourier transform infrared spectroscopy study revealed that the pattern of new absorption bands, altered absorption intensity, and shift in wavenumber of functional groups was deduced, due to interaction between metal ions and active sites of biosorbent. The present study concluded that A. flavus SGE34 has high metal tolerance and biosorption capacity; it could effectively remove lead from industrial effluents.","PeriodicalId":9960,"journal":{"name":"Chemistry and Ecology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02757540.2023.2253224","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT
Lead is an environmental pollutant that causes remarkable damage to various organs in the human body, especially the nervous system. Removal of lead by conventional methods is costly, and therefore, in the current scenario, biosorption using fungi is extensively explored as they provide good metal uptake systems. The present study evaluated the Pb (II) biosorption potential of endophytic fungi Aspergillus flavus SGE34. The fungal isolate was obtained from the root of an indigenous medicinal plant of the Chhattisgarh region named Cleome viscosa Linn. The biosorption potential of dead fungal biomass was optimized at different operating parameters like contact time, pH, and temperature. The maximum biosorption values were found at pH 6.0 with an equilibrium time of 150 minutes at 350C. The Fourier transform infrared spectroscopy study revealed that the pattern of new absorption bands, altered absorption intensity, and shift in wavenumber of functional groups was deduced, due to interaction between metal ions and active sites of biosorbent. The present study concluded that A. flavus SGE34 has high metal tolerance and biosorption capacity; it could effectively remove lead from industrial effluents.
期刊介绍:
Chemistry and Ecology publishes original articles, short notes and occasional reviews on the relationship between chemistry and ecological processes. This journal reflects how chemical form and state, as well as other basic properties, are critical in their influence on biological systems and that understanding of the routes and dynamics of the transfer of materials through atmospheric, terrestrial and aquatic systems, and the associated effects, calls for an integrated treatment. Chemistry and Ecology will help promote the ecological assessment of a changing chemical environment and in the development of a better understanding of ecological functions.