Seismic random noise attenuation via a two-stage U-net with supervised attention

IF 0.6 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Exploration Geophysics Pub Date : 2023-06-02 DOI:10.1080/08123985.2023.2218870
Yulan Yang, Lihua Fu, Kun Qian, Hongwei Li
{"title":"Seismic random noise attenuation via a two-stage U-net with supervised attention","authors":"Yulan Yang, Lihua Fu, Kun Qian, Hongwei Li","doi":"10.1080/08123985.2023.2218870","DOIUrl":null,"url":null,"abstract":"Random noise, which has a significant impact on subsequent processing and interpretation, easily interferes with seismic data. Current convolutional neural networks (CNN) use a single-stage technique to boost network capacity by exploiting the complicated network structure, but the performance of the network becomes saturated and prone to overfitting at a certain stage. Hence, we propose a two-stage U-Net denoising network with a supervised attention module (UNet-SAM). In this supervised algorithm, the first stage obtains the pre-denoising results, while the second stage achieves more accurate data. The supervised attention module (SAM) block is inserted in the first stage, extracting features with supervised attention to utilise as a priori information and guide the fine denoising in the second stage. The combination of the attention mechanism and two-stage strategy provides prior information that helps to train a network with better denoising performance. Experiments on synthetic and field data illustrate that the proposed UNet-SAM not only has a superior denoising effect but also retains more of the original effective signal.","PeriodicalId":50460,"journal":{"name":"Exploration Geophysics","volume":"54 1","pages":"636 - 646"},"PeriodicalIF":0.6000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2023.2218870","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Random noise, which has a significant impact on subsequent processing and interpretation, easily interferes with seismic data. Current convolutional neural networks (CNN) use a single-stage technique to boost network capacity by exploiting the complicated network structure, but the performance of the network becomes saturated and prone to overfitting at a certain stage. Hence, we propose a two-stage U-Net denoising network with a supervised attention module (UNet-SAM). In this supervised algorithm, the first stage obtains the pre-denoising results, while the second stage achieves more accurate data. The supervised attention module (SAM) block is inserted in the first stage, extracting features with supervised attention to utilise as a priori information and guide the fine denoising in the second stage. The combination of the attention mechanism and two-stage strategy provides prior information that helps to train a network with better denoising performance. Experiments on synthetic and field data illustrate that the proposed UNet-SAM not only has a superior denoising effect but also retains more of the original effective signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带监督注意的两级u网地震随机噪声衰减方法
随机噪声对地震资料的后续处理和解释具有重要影响。目前的卷积神经网络(CNN)利用复杂的网络结构,采用单阶段技术来提升网络容量,但在某一阶段网络性能趋于饱和,容易出现过拟合。因此,我们提出了一种带有监督注意模块(UNet-SAM)的两阶段U-Net去噪网络。在该监督算法中,第一阶段得到预去噪结果,第二阶段得到更精确的数据。在第一阶段插入监督注意模块(SAM)块,提取具有监督注意的特征作为先验信息,指导第二阶段的精细去噪。注意机制和两阶段策略的结合提供了先验信息,有助于训练出具有更好去噪性能的网络。综合和现场数据实验表明,该方法不仅具有较好的去噪效果,而且保留了较多的原始有效信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Exploration Geophysics
Exploration Geophysics 地学-地球化学与地球物理
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Exploration Geophysics is published on behalf of the Australian Society of Exploration Geophysicists (ASEG), Society of Exploration Geophysics of Japan (SEGJ), and Korean Society of Earth and Exploration Geophysicists (KSEG). The journal presents significant case histories, advances in data interpretation, and theoretical developments resulting from original research in exploration and applied geophysics. Papers that may have implications for field practice in Australia, even if they report work from other continents, will be welcome. ´Exploration and applied geophysics´ will be interpreted broadly by the editors, so that geotechnical and environmental studies are by no means precluded. Papers are expected to be of a high standard. Exploration Geophysics uses an international pool of reviewers drawn from industry and academic authorities as selected by the editorial panel. The journal provides a common meeting ground for geophysicists active in either field studies or basic research.
期刊最新文献
Fuzzy c-mean (FCM) integration of geophysical data from an iron-oxide copper gold (IOCG) deposit under thick cover A rapid imaging approach for transient electromagnetic data based on gradient features Improving the accuracy of density logging results considering mineral composition for evaluation of high-level radioactive waste disposal sites Advances in forward modelling and inversion of geophysical electromagnetic data Low resistivity anomalies in the upper crust of the Midlands of Tasmania from combined magnetotelluric datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1