{"title":"An investigation of the catalytic performance of Fe–Mn/Al2O3 nanocatalyst for light olefins production using RSM method and kinetic study","authors":"Maryam Arsalanfar","doi":"10.1002/kin.21688","DOIUrl":null,"url":null,"abstract":"<p>The Fe–Mn/Al<sub>2</sub>O<sub>3</sub> nanocatalysts were manufactured via the sol-gel procedure and were evaluated for Fischer–Tropsch synthesis. The impact of different operational parameters of <i>T</i>, <i>P</i>, and H<sub>2</sub>/CO ratio on the catalytic performance for light olefins production has been studied using response surface methodology (RSM). Furthermore, the optimization and modeling of selected responses were also carried out via RSM and historical data design type of DOE; and the best process conditions were found to be <i>T</i> = 365°C, H<sub>2</sub>/CO = 1.50, and <i>P</i> = 1.50 bar. The mechanism of CO hydrogenation reaction over the Fe–Mn/Al<sub>2</sub>O<sub>3</sub> nanocatalysts was also investigated using the non-linear regression method. It was found that the mechanism of the CO hydrogenation reaction is based on the Eley–Rideal type and the best-fitted equation for this mechanism was found to be −<i>r</i><sub>CO</sub> = KP<sub>CO</sub>P<sub>H2</sub>/1+αP<sub>CO</sub>. The obtained value of activation energy (85.20 kJ mol<sup>−1</sup>) affirmed the absence of internal mass transfer limitations. The physico-chemical properties of the samples were investigated by various techniques of XRD, BET, TPR, TGA, and DSC.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"56 1","pages":"3-19"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21688","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Fe–Mn/Al2O3 nanocatalysts were manufactured via the sol-gel procedure and were evaluated for Fischer–Tropsch synthesis. The impact of different operational parameters of T, P, and H2/CO ratio on the catalytic performance for light olefins production has been studied using response surface methodology (RSM). Furthermore, the optimization and modeling of selected responses were also carried out via RSM and historical data design type of DOE; and the best process conditions were found to be T = 365°C, H2/CO = 1.50, and P = 1.50 bar. The mechanism of CO hydrogenation reaction over the Fe–Mn/Al2O3 nanocatalysts was also investigated using the non-linear regression method. It was found that the mechanism of the CO hydrogenation reaction is based on the Eley–Rideal type and the best-fitted equation for this mechanism was found to be −rCO = KPCOPH2/1+αPCO. The obtained value of activation energy (85.20 kJ mol−1) affirmed the absence of internal mass transfer limitations. The physico-chemical properties of the samples were investigated by various techniques of XRD, BET, TPR, TGA, and DSC.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.