A neural network model for automated prediction of avalanche danger level

IF 4.2 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Natural Hazards and Earth System Sciences Pub Date : 2023-07-14 DOI:10.5194/nhess-23-2523-2023
Vipasana Sharma, Sushil Kumar, R. Sushil
{"title":"A neural network model for automated prediction of avalanche danger level","authors":"Vipasana Sharma, Sushil Kumar, R. Sushil","doi":"10.5194/nhess-23-2523-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Snow avalanches cause danger to human lives and property\nworldwide in high-altitude mountainous regions. Mathematical models based on past data records can predict the danger level. In this paper, we are\nproposing a neural network model for predicting avalanches. The model is\ntrained with a quality-controlled sub-dataset of the Swiss Alps. Training\naccuracy of 79.75 % and validation accuracy of 76.54 % have been\nachieved. Comparative analysis of neural network and random forest models\nconcerning metrics like precision, recall, and F1 has also been carried out.\n","PeriodicalId":18922,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards and Earth System Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/nhess-23-2523-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Snow avalanches cause danger to human lives and property worldwide in high-altitude mountainous regions. Mathematical models based on past data records can predict the danger level. In this paper, we are proposing a neural network model for predicting avalanches. The model is trained with a quality-controlled sub-dataset of the Swiss Alps. Training accuracy of 79.75 % and validation accuracy of 76.54 % have been achieved. Comparative analysis of neural network and random forest models concerning metrics like precision, recall, and F1 has also been carried out.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雪崩危险度自动预测的神经网络模型
摘要雪崩对高海拔山区的人类生命和财产造成威胁。基于过去数据记录的数学模型可以预测危险程度。在本文中,我们提出了一个预测雪崩的神经网络模型。该模型使用瑞士阿尔卑斯山的质量控制子数据集进行管理。培训准确率79.75 % 验证准确度为76.54 % 已经实现。还对神经网络和随机森林模型的精度、召回率和F1等指标进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Hazards and Earth System Sciences
Natural Hazards and Earth System Sciences 地学-地球科学综合
CiteScore
7.60
自引率
6.50%
发文量
192
审稿时长
3.8 months
期刊介绍: Natural Hazards and Earth System Sciences (NHESS) is an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences. Embracing a holistic Earth system science approach, NHESS serves a wide and diverse community of research scientists, practitioners, and decision makers concerned with detection of natural hazards, monitoring and modelling, vulnerability and risk assessment, and the design and implementation of mitigation and adaptation strategies, including economical, societal, and educational aspects.
期刊最新文献
Role of Dipeptidyl Dipeptidase 4 Inhibitors in the Management of Diabetic Foot. Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide modeling Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup Wind as a natural hazard in Poland The role of response efficacy and self-efficacy in disaster preparedness actions for vulnerable households
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1