Simulating the population dynamics of barley grass (Hordeum spp.) and impacts of weed management strategies in a southern Australian lucerne (Medicago sativa) pasture
{"title":"Simulating the population dynamics of barley grass (Hordeum spp.) and impacts of weed management strategies in a southern Australian lucerne (Medicago sativa) pasture","authors":"Jane E. Kelly, K. Behrendt, J. Quinn","doi":"10.1071/CP22297","DOIUrl":null,"url":null,"abstract":"ABSTRACT Context. Barley grass (Hordeum spp. L.) is an annual, invasive grass weed of southern Australian crops and pastures, frequently associated with weight loss and carcass damage in sheep due to its sharp seeds. Knowledge gaps exist regarding optimal density thresholds for effective control to reduce impacts on animal production. The value of integrated weed management (IWM) over individual control options for reducing barley grass populations in pasture is also unknown. Aims. We aimed to develop a model for simulating the population dynamics of barley grass within lucerne (Medicago sativa L.) pastures of southern Australia and to test the hypothesis that combining herbicides with mowing will be more effective for removing barley grass seedbanks over time than individual control measures. Methods. The model was developed within Microsoft Excel and adapted from other annual grass models. The model takes a Monte Carlo approach to simulate control impacts on weed seedbanks over 10 years using five weed-control density thresholds. It was parameterised using data from recent experiments and available literature. Key results. The most effective long-term control strategy for barley grass occurred with a density threshold of 5 seedlings m−2 by combining early and late herbicide applications, and by combining early and late herbicides with mowing, reducing the seedbank by 86% and 89%, respectively. Conclusions. Simulation results showed that IWM programs were more effective than individual control options in reducing the barley grass seedbanks over 10 years, particularly at low weed densities (≤50 seedlings m−2). Implications. Incorporation of this model into a bioeconomic grazing systems model will be valuable for determining the economic impacts and optimal weed-control strategies for minimising the effects of barley grass seed contamination in lamb production systems.","PeriodicalId":51237,"journal":{"name":"Crop & Pasture Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop & Pasture Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/CP22297","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Context. Barley grass (Hordeum spp. L.) is an annual, invasive grass weed of southern Australian crops and pastures, frequently associated with weight loss and carcass damage in sheep due to its sharp seeds. Knowledge gaps exist regarding optimal density thresholds for effective control to reduce impacts on animal production. The value of integrated weed management (IWM) over individual control options for reducing barley grass populations in pasture is also unknown. Aims. We aimed to develop a model for simulating the population dynamics of barley grass within lucerne (Medicago sativa L.) pastures of southern Australia and to test the hypothesis that combining herbicides with mowing will be more effective for removing barley grass seedbanks over time than individual control measures. Methods. The model was developed within Microsoft Excel and adapted from other annual grass models. The model takes a Monte Carlo approach to simulate control impacts on weed seedbanks over 10 years using five weed-control density thresholds. It was parameterised using data from recent experiments and available literature. Key results. The most effective long-term control strategy for barley grass occurred with a density threshold of 5 seedlings m−2 by combining early and late herbicide applications, and by combining early and late herbicides with mowing, reducing the seedbank by 86% and 89%, respectively. Conclusions. Simulation results showed that IWM programs were more effective than individual control options in reducing the barley grass seedbanks over 10 years, particularly at low weed densities (≤50 seedlings m−2). Implications. Incorporation of this model into a bioeconomic grazing systems model will be valuable for determining the economic impacts and optimal weed-control strategies for minimising the effects of barley grass seed contamination in lamb production systems.
期刊介绍:
Crop and Pasture Science (formerly known as Australian Journal of Agricultural Research) is an international journal publishing outcomes of strategic research in crop and pasture sciences and the sustainability of farming systems. The primary focus is broad-scale cereals, grain legumes, oilseeds and pastures. Articles are encouraged that advance understanding in plant-based agricultural systems through the use of well-defined and original aims designed to test a hypothesis, innovative and rigorous experimental design, and strong interpretation. The journal embraces experimental approaches from molecular level to whole systems, and the research must present novel findings and progress the science of agriculture.
Crop and Pasture Science is read by agricultural scientists and plant biologists, industry, administrators, policy-makers, and others with an interest in the challenges and opportunities facing world agricultural production.
Crop and Pasture Science is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.