Structure of ACLY in complex with CoA

IF 16.8 1区 生物学 Nature Structural &Molecular Biology Pub Date : 2019-12-25 DOI:10.2210/pdb6poe/pdb
Xuepeng Wei, Kollin Schultz, Gleb A. Bazilevsky, Austin D. Vogt, R. Marmorstein
{"title":"Structure of ACLY in complex with CoA","authors":"Xuepeng Wei, Kollin Schultz, Gleb A. Bazilevsky, Austin D. Vogt, R. Marmorstein","doi":"10.2210/pdb6poe/pdb","DOIUrl":null,"url":null,"abstract":"ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer with a rigid citrate synthase homology (CSH) module, flanked by four flexible acetyl-CoA synthetase homology (ASH) domains; CoA is bound at the CSH-ASH interface in mutually exclusive productive or unproductive conformations. The structure of a catalytic mutant of ACLY in the presence of ATP, citrate and CoA substrates reveals a phospho-citryl-CoA intermediate in the ASH domain. ACLY with acetyl-CoA and oxaloacetate products shows the products bound in the ASH domain, with an additional oxaloacetate in the CSH domain, which could function in ACLY autoinhibition. These structures, which are supported by biochemical and biophysical data, challenge previous proposals of the ACLY catalytic mechanism and suggest additional therapeutic possibilities for ACLY-associated metabolic disorders.","PeriodicalId":18836,"journal":{"name":"Nature Structural &Molecular Biology","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2019-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural &Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2210/pdb6poe/pdb","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer with a rigid citrate synthase homology (CSH) module, flanked by four flexible acetyl-CoA synthetase homology (ASH) domains; CoA is bound at the CSH-ASH interface in mutually exclusive productive or unproductive conformations. The structure of a catalytic mutant of ACLY in the presence of ATP, citrate and CoA substrates reveals a phospho-citryl-CoA intermediate in the ASH domain. ACLY with acetyl-CoA and oxaloacetate products shows the products bound in the ASH domain, with an additional oxaloacetate in the CSH domain, which could function in ACLY autoinhibition. These structures, which are supported by biochemical and biophysical data, challenge previous proposals of the ACLY catalytic mechanism and suggest additional therapeutic possibilities for ACLY-associated metabolic disorders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ACLY与辅酶A复合物的结构
atp -柠檬酸解酶(ACLY)合成胞浆乙酰辅酶A (acetyl- coa),这是细胞的基本组成部分。因此,在许多疾病中观察到异常的ACLY活性。在这里,我们报告了人类ACLY的低温电镜结构,单独或结合底物或产物。ACLY形成一个具有刚性柠檬酸合成酶同源性(CSH)模块的同聚体,两侧是四个柔性乙酰辅酶a合成酶同源性(ASH)结构域;CoA以互斥的生产性或非生产性构象结合在CSH-ASH界面上。在ATP、柠檬酸盐和CoA底物存在下,ACLY的催化突变体的结构揭示了ASH域中的磷酸柠檬酸辅酶a中间体。含有乙酰辅酶a和草酰乙酸产物的ACLY表明产物结合在ASH结构域,在CSH结构域有一个额外的草酰乙酸,这可能在ACLY中起自抑制作用。这些结构得到了生化和生物物理数据的支持,挑战了之前关于ACLY催化机制的建议,并为ACLY相关代谢疾病的治疗提供了额外的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Structural &Molecular Biology
Nature Structural &Molecular Biology 生物-生化与分子生物学
自引率
1.80%
发文量
160
期刊介绍: Nature Structural & Molecular Biology is a monthly journal that focuses on the functional and mechanistic understanding of how molecular components in a biological process work together. It serves as an integrated forum for structural and molecular studies. The journal places a strong emphasis on the functional and mechanistic understanding of how molecular components in a biological process work together. Some specific areas of interest include the structure and function of proteins, nucleic acids, and other macromolecules, DNA replication, repair and recombination, transcription, regulation of transcription and translation, protein folding, processing and degradation, signal transduction, and intracellular signaling.
期刊最新文献
Publisher Correction: Structure and activation of the RING E3 ubiquitin ligase TRIM72 on the membrane. Author Correction: Structural basis for antibody-mediated NMDA receptor clustering and endocytosis in autoimmune encephalitis. The ribosome termination complex remodels release factor RF3 and ejects GDP. Structural basis of NEAT1 lncRNA maturation and menRNA instability. Author Correction: MYC phase separation selectively modulates the transcriptome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1