Uncovering Topics of Public Cultural Activities: Evidence from China

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2022-07-01 DOI:10.1162/dint_a_00121
Zixin Zeng, Bolin Hua
{"title":"Uncovering Topics of Public Cultural Activities: Evidence from China","authors":"Zixin Zeng, Bolin Hua","doi":"10.1162/dint_a_00121","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we uncover the topics of Chinese public cultural activities in 2020 with a two-step short text clustering (self-taught neural networks and graph-based clustering) and topic modeling approach. The dataset we use for this research is collected from 108 websites of libraries and cultural centers, containing over 17,000 articles. With the novel framework we propose, we derive 3 clusters and 8 topics from 21 provincial-level regions in China. By plotting the topic distribution of each cluster, we are able to shows unique tendencies of local cultural institutes, that is, free lessons and lectures on art and culture, entertainment and service for socially vulnerable groups, and the preservation of intangible cultural heritage respectively. The findings of our study provide decision-making support for cultural institutes, thus promoting public cultural service from a data-driven perspective.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"4 1","pages":"509-528"},"PeriodicalIF":1.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00121","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this study, we uncover the topics of Chinese public cultural activities in 2020 with a two-step short text clustering (self-taught neural networks and graph-based clustering) and topic modeling approach. The dataset we use for this research is collected from 108 websites of libraries and cultural centers, containing over 17,000 articles. With the novel framework we propose, we derive 3 clusters and 8 topics from 21 provincial-level regions in China. By plotting the topic distribution of each cluster, we are able to shows unique tendencies of local cultural institutes, that is, free lessons and lectures on art and culture, entertainment and service for socially vulnerable groups, and the preservation of intangible cultural heritage respectively. The findings of our study provide decision-making support for cultural institutes, thus promoting public cultural service from a data-driven perspective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
公共文化活动的主题揭示:来自中国的证据
摘要本研究采用两步短文本聚类(自学神经网络和基于图的聚类)和主题建模方法,揭示了2020年中国公共文化活动的主题。我们用于这项研究的数据集来自108个图书馆和文化中心的网站,包含超过17,000篇文章。在此框架下,我们从中国21个省级地区得到了3个集群和8个主题。通过绘制每个集群的主题分布,我们可以看到当地文化机构的独特倾向,分别是免费的艺术文化课程和讲座,为社会弱势群体提供娱乐和服务,以及非物质文化遗产保护。研究结果为文化机构提供决策支持,从而从数据驱动的角度推动公共文化服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1