N. Opoku, R. Borkor, Andrews Frimpong Adu, H. Nyarko, Albert Doughan, Edwin Moses Appiah, Biigba Yakubu, Isabel Mensah, S. P. Salifu
{"title":"Modelling the Transmission Dynamics of Meningitis among High and Low-Risk People in Ghana with Cost-Effectiveness Analysis","authors":"N. Opoku, R. Borkor, Andrews Frimpong Adu, H. Nyarko, Albert Doughan, Edwin Moses Appiah, Biigba Yakubu, Isabel Mensah, S. P. Salifu","doi":"10.1155/2022/9084283","DOIUrl":null,"url":null,"abstract":"Meningitis is an inflammation of the meninges, which covers the brain and spinal cord. Every year, most individuals within sub-Saharan Africa suffer from meningococcal meningitis. Moreover, tens of thousands of these cases result in death, especially during major epidemics. The transmission dynamics of the disease keep changing, according to health practitioners. The goal of this study is to exploit robust mechanisms to manage and prevent the disease at a minimal cost due to its public health implications. A significant concern found to aid in the transmission of meningitis disease is the movement and interaction of individuals from low-risk to high-risk zones during the outbreak season. Thus, this article develops a mathematical model that ascertains the dynamics involved in meningitis transmissions by partitioning individuals into low- and high-risk susceptible groups. After computing the basic reproduction number, the model is shown to exhibit a unique local asymptotically stability at the meningitis-free equilibrium \n \n \n \n E\n \n \n †\n \n \n \n , when the effective reproduction number \n \n \n \n R\n \n \n 0\n \n \n <\n 1\n \n , and the existence of two endemic equilibria for which \n \n \n \n R\n \n \n 0\n \n \n †\n \n \n <\n \n \n R\n \n \n 0\n \n \n <\n 1\n \n and exhibits the phenomenon of backward bifurcation, which shows the difficulty of relying only on the reproduction number to control the disease. The effective reproductive number estimated in real time using the exponential growth method affirmed that the number of secondary meningitis infections will continue to increase without any intervention or policies. To find the best strategy for minimizing the number of carriers and infected individuals, we reformulated the model into an optimal control model using Pontryagin’s maximum principles with intervention measures such as vaccination, treatment, and personal protection. Although Ghana’s most preferred meningitis intervention method is via treatment, the model’s simulations demonstrated that the best strategy to control meningitis is to combine vaccination with treatment. But the cost-effectiveness analysis results show that vaccination and treatment are among the most expensive measures to implement. For that reason, personal protection which is the most cost-effective measure needs to be encouraged, especially among individuals migrating from low- to high-risk meningitis belts.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9084283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
Meningitis is an inflammation of the meninges, which covers the brain and spinal cord. Every year, most individuals within sub-Saharan Africa suffer from meningococcal meningitis. Moreover, tens of thousands of these cases result in death, especially during major epidemics. The transmission dynamics of the disease keep changing, according to health practitioners. The goal of this study is to exploit robust mechanisms to manage and prevent the disease at a minimal cost due to its public health implications. A significant concern found to aid in the transmission of meningitis disease is the movement and interaction of individuals from low-risk to high-risk zones during the outbreak season. Thus, this article develops a mathematical model that ascertains the dynamics involved in meningitis transmissions by partitioning individuals into low- and high-risk susceptible groups. After computing the basic reproduction number, the model is shown to exhibit a unique local asymptotically stability at the meningitis-free equilibrium
E
†
, when the effective reproduction number
R
0
<
1
, and the existence of two endemic equilibria for which
R
0
†
<
R
0
<
1
and exhibits the phenomenon of backward bifurcation, which shows the difficulty of relying only on the reproduction number to control the disease. The effective reproductive number estimated in real time using the exponential growth method affirmed that the number of secondary meningitis infections will continue to increase without any intervention or policies. To find the best strategy for minimizing the number of carriers and infected individuals, we reformulated the model into an optimal control model using Pontryagin’s maximum principles with intervention measures such as vaccination, treatment, and personal protection. Although Ghana’s most preferred meningitis intervention method is via treatment, the model’s simulations demonstrated that the best strategy to control meningitis is to combine vaccination with treatment. But the cost-effectiveness analysis results show that vaccination and treatment are among the most expensive measures to implement. For that reason, personal protection which is the most cost-effective measure needs to be encouraged, especially among individuals migrating from low- to high-risk meningitis belts.
期刊介绍:
Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.