Fatigue behavior and self-heating mechanism of novel glass fiber reinforced thermoplastic composite

IF 1.8 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Advanced Composite Materials Pub Date : 2023-02-09 DOI:10.1080/09243046.2023.2175764
M. Bakkal, Mete Kayihan, Azmi Timur, Z. Parlar, Canan Gamze Güleryüz Parasız, Aysun Yücel, I. Palabiyik, T. Gülmez
{"title":"Fatigue behavior and self-heating mechanism of novel glass fiber reinforced thermoplastic composite","authors":"M. Bakkal, Mete Kayihan, Azmi Timur, Z. Parlar, Canan Gamze Güleryüz Parasız, Aysun Yücel, I. Palabiyik, T. Gülmez","doi":"10.1080/09243046.2023.2175764","DOIUrl":null,"url":null,"abstract":"In this study, fatigue properties of a novel continuous glass fiber reinforced composite with an acrylic-based thermoplastic matrix Elium®, have been investigated and S-N curves were obtained. The effect of various fiber orientations of the plies with glass fibers of 0°/90°/±45°, 0°/90°, and ±45° alignment has been evaluated. The highest fatigue strengths have been recorded for composites with 0°/90° glass fiber ply orientations. Composite with ±45° alignment has the lowest fatigue strengths in S-N curves. Stiffness degradation of the composites with 0°/90° and 0°/90°/±45° at medium fatigue stress levels was calculated and showed higher degradation for stacking having more off-axis plies, i.e. 0°/90°/±45° alignment. Temperature increase during fatigue testing was measured using an IR camera for a medium fatigue stress level for 0°/90°/±45° alignment. Temperature increases were calculated for all stress amplitudes for composites with 0°/90°/±45° and 0°/90° alignment cross-ply sequences. The temperatures obtained were all below the glass transition temperature of the material. The 0°/90°/±45° plies had a higher temperature effect than 0°/90° plies in both analytical calculations and observations.","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09243046.2023.2175764","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, fatigue properties of a novel continuous glass fiber reinforced composite with an acrylic-based thermoplastic matrix Elium®, have been investigated and S-N curves were obtained. The effect of various fiber orientations of the plies with glass fibers of 0°/90°/±45°, 0°/90°, and ±45° alignment has been evaluated. The highest fatigue strengths have been recorded for composites with 0°/90° glass fiber ply orientations. Composite with ±45° alignment has the lowest fatigue strengths in S-N curves. Stiffness degradation of the composites with 0°/90° and 0°/90°/±45° at medium fatigue stress levels was calculated and showed higher degradation for stacking having more off-axis plies, i.e. 0°/90°/±45° alignment. Temperature increase during fatigue testing was measured using an IR camera for a medium fatigue stress level for 0°/90°/±45° alignment. Temperature increases were calculated for all stress amplitudes for composites with 0°/90°/±45° and 0°/90° alignment cross-ply sequences. The temperatures obtained were all below the glass transition temperature of the material. The 0°/90°/±45° plies had a higher temperature effect than 0°/90° plies in both analytical calculations and observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型玻璃纤维增强热塑性复合材料的疲劳行为及自热机理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Composite Materials
Advanced Composite Materials 工程技术-材料科学:复合
CiteScore
5.00
自引率
20.70%
发文量
54
审稿时长
3 months
期刊介绍: "Advanced Composite Materials (ACM), a bi-monthly publication of the Japan Society for Composite Materials and the Korean Society for Composite Materials, provides an international forum for researchers, manufacturers and designers who are working in the field of composite materials and their structures. Issues contain articles on all aspects of current scientific and technological progress in this interdisciplinary field. The topics of interest are physical, chemical, mechanical and other properties of advanced composites as well as their constituent materials; experimental and theoretical studies relating microscopic to macroscopic behavior; testing and evaluation with emphasis on environmental effects and reliability; novel techniques of fabricating various types of composites and of forming structural components utilizing these materials; design and analysis for specific applications. Advanced Composite Materials publishes refereed original research papers, review papers, technical papers and short notes as well as some translated papers originally published in the Journal of the Japan Society for Composite Materials. Issues also contain news items such as information on new materials and their processing."
期刊最新文献
Structural health monitoring of type 4 composite fuel tank based on correlation between ultrasonic attenuation and crack density Comparison of post-impact residual strength ratio between hybrid filament-wound cylinder and hybrid plate specimen Highly efficient and reusable polyacrylonitrile-based nanocomposite sorbents for oil spill removal Shell element-based prediction of process-induced deformation considering the different fabric parameters and stacking sequences of CFRP woven composites Crack monitoring and repair model of SMA composite material based on strain transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1