Shufang GUO , Yitao ZHANG , Limei ZHAI , Jian LIU , Hongyuan WANG , Hongbin LIU
{"title":"Environmental benefits and farmers' adoption of winter cover crops in the North China Plain","authors":"Shufang GUO , Yitao ZHANG , Limei ZHAI , Jian LIU , Hongyuan WANG , Hongbin LIU","doi":"10.1016/j.pedsph.2023.03.011","DOIUrl":null,"url":null,"abstract":"<div><p>The introduction of cover crops into monoculture systems to improve soil health has been widely adopted worldwide. However, little is known about the environmental risks and application prospects of different cover crops in spring maize (<em>Zea mays</em> L.) monocultures proposed in the North China Plain. A pot experiment was conducted to evaluate the effects of different winter cover crops on subsequent maize yield, soil fertility, and environmental risks of nitrogen (N) loss, and a questionnaire survey was conducted to examine factors influencing farmers' willingness to adopt cover crops in the North China Plain. Based on the same fertilization regime during the maize growing period, four winter cover crop treatments were set up, including bare fallow, hairy vetch (<em>Vicia villosa</em> Roth.), February orchid (<em>Orychophragmus violaceus</em>), and winter oilseed rape <em>(Brassica campestris</em> L.). The results indicated that winter cover crops significantly increased subsequent maize yield and soil organic carbon, total N, and microbial biomass carbon and N compared with the bare fallow treatment. The incorporation of cover crops led to a negligible increase in nitrous oxide (N<sub>2</sub>O) emissions and had a very limited effect on ammonia (NH<sub>3</sub>) emissions. The incorporation of February orchid and winter oilseed rape decreased nitrate leaching compared with the hairy vetch treatment in the maize growing season. The N losses <em>via</em> N<sub>2</sub>O and NH<sub>3</sub> emissions and N leaching accounted for 71%–84% of the N surplus. However, yield increase and environmental benefits were not the main positive factors for farmers to accept cover crops. Financial incentive was rated by 83.9% of farmers as an “extremely important” factor, followed by other costs, when considering winter cover cropping. These results indicate that the environmental benefits depend on the type of cover crop. Maintaining high levels of soil fertility and maize yield, providing sufficient subsidies, and encouraging large-area cultivation of cover crops are critical measures to promote winter cover cropping in the North China Plain.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 1","pages":"Pages 159-169"},"PeriodicalIF":5.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1002016023000309/pdfft?md5=e59ba996506a321639682f0fdb1a1e32&pid=1-s2.0-S1002016023000309-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002016023000309","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of cover crops into monoculture systems to improve soil health has been widely adopted worldwide. However, little is known about the environmental risks and application prospects of different cover crops in spring maize (Zea mays L.) monocultures proposed in the North China Plain. A pot experiment was conducted to evaluate the effects of different winter cover crops on subsequent maize yield, soil fertility, and environmental risks of nitrogen (N) loss, and a questionnaire survey was conducted to examine factors influencing farmers' willingness to adopt cover crops in the North China Plain. Based on the same fertilization regime during the maize growing period, four winter cover crop treatments were set up, including bare fallow, hairy vetch (Vicia villosa Roth.), February orchid (Orychophragmus violaceus), and winter oilseed rape (Brassica campestris L.). The results indicated that winter cover crops significantly increased subsequent maize yield and soil organic carbon, total N, and microbial biomass carbon and N compared with the bare fallow treatment. The incorporation of cover crops led to a negligible increase in nitrous oxide (N2O) emissions and had a very limited effect on ammonia (NH3) emissions. The incorporation of February orchid and winter oilseed rape decreased nitrate leaching compared with the hairy vetch treatment in the maize growing season. The N losses via N2O and NH3 emissions and N leaching accounted for 71%–84% of the N surplus. However, yield increase and environmental benefits were not the main positive factors for farmers to accept cover crops. Financial incentive was rated by 83.9% of farmers as an “extremely important” factor, followed by other costs, when considering winter cover cropping. These results indicate that the environmental benefits depend on the type of cover crop. Maintaining high levels of soil fertility and maize yield, providing sufficient subsidies, and encouraging large-area cultivation of cover crops are critical measures to promote winter cover cropping in the North China Plain.
期刊介绍:
PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.