{"title":"Ending the suitability quantification dilemma: intelligent decision support system for modular integrated construction in a high-density metropolis","authors":"I. Y. Wuni, K. Mazher","doi":"10.1108/ci-09-2022-0242","DOIUrl":null,"url":null,"abstract":"\nPurpose\nModular integrated construction (MiC) is a modern construction method innovating and reinventing the traditional site-based construction method. As it integrates advanced manufacturing principles and requires offsite production of volumetric building components, several factors and conditions must converge to make the MiC method suitable and efficient for building projects in each context. This paper aims to present a knowledge-based decision support system (KB-DSS) for assessing a project’s suitability for the MiC method.\n\n\nDesign/methodology/approach\nThe KB-DSS uses 21 significant suitability decision-making factors identified through literature review, consultation of experts and questionnaire surveys. It has a knowledge base, a DSS and a user interface. The knowledge base comprises IF-THEN production rules to compute the MiC suitability score with the efficient use of the powerful reasoning and explanation capabilities of DSS.\n\n\nFindings\nThe tool receives the inputs of a decision-maker, computes the MiC suitability score for a given project and generates recommendations based on the score. Three real-world projects in Hong Kong are used to demonstrate the applicability of the tool for solving the MiC suitability assessment problem.\n\n\nOriginality/value\nThis study established the complex and competing significant conditions and factors determining the suitability of the MiC method for construction projects. It developed a unique tool combining the capabilities of expert systems and decision support system to address the complex problem of assessing the suitability of the MiC method for construction projects in a high-density metropolis.\n","PeriodicalId":45580,"journal":{"name":"Construction Innovation-England","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Innovation-England","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ci-09-2022-0242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose
Modular integrated construction (MiC) is a modern construction method innovating and reinventing the traditional site-based construction method. As it integrates advanced manufacturing principles and requires offsite production of volumetric building components, several factors and conditions must converge to make the MiC method suitable and efficient for building projects in each context. This paper aims to present a knowledge-based decision support system (KB-DSS) for assessing a project’s suitability for the MiC method.
Design/methodology/approach
The KB-DSS uses 21 significant suitability decision-making factors identified through literature review, consultation of experts and questionnaire surveys. It has a knowledge base, a DSS and a user interface. The knowledge base comprises IF-THEN production rules to compute the MiC suitability score with the efficient use of the powerful reasoning and explanation capabilities of DSS.
Findings
The tool receives the inputs of a decision-maker, computes the MiC suitability score for a given project and generates recommendations based on the score. Three real-world projects in Hong Kong are used to demonstrate the applicability of the tool for solving the MiC suitability assessment problem.
Originality/value
This study established the complex and competing significant conditions and factors determining the suitability of the MiC method for construction projects. It developed a unique tool combining the capabilities of expert systems and decision support system to address the complex problem of assessing the suitability of the MiC method for construction projects in a high-density metropolis.