Intensifying biofuel production using a novel bionic flow-induced peristaltic reactor: biodiesel production as a case study

IF 14.4 Q1 ENERGY & FUELS Biofuel Research Journal-BRJ Pub Date : 2022-12-01 DOI:10.18331/brj2022.9.4.3
Jianyu Wang, A. Xia, Zhichao Deng, Yun Huang, Xianqing Zhu, Xun Zhu, Q. Liao
{"title":"Intensifying biofuel production using a novel bionic flow-induced peristaltic reactor: biodiesel production as a case study","authors":"Jianyu Wang, A. Xia, Zhichao Deng, Yun Huang, Xianqing Zhu, Xun Zhu, Q. Liao","doi":"10.18331/brj2022.9.4.3","DOIUrl":null,"url":null,"abstract":"Intensification of biofuel production processes could play a critical role in boosting the economic and environmental features of the whole process. A novel bionic flow-induced peristaltic reactor with a high conversion rate is constructed to realize efficient biofuel production from high-concentration high-viscosity fluids. It is experimentally verified through biodiesel production from soybean oil. Experimental results show that the conversion efficiency is up to 89.9% at 10 s in the peristaltic reactor, which is 38.4% higher than that in the rigid tube reactor. Furthermore, a three-dimensional peristaltic model is conducted to understand the mechanism of heat and mass transfer enhancement. The simulation results show that an increase in peristaltic amplitude strengthens the mixing of the bionic peristaltic reactor by 92.5-100.8%. The temperature distribution in the bionic peristaltic reactor is more uniform than in the traditional rigid tube reactor. The results demonstrate that the conversion rate of soybean oil in the bionic flow-induced peristaltic reactor is 528.82% min-1, which is 17-60 times higher than other intensified reactors operating in either continuous or batch modes.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/brj2022.9.4.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 6

Abstract

Intensification of biofuel production processes could play a critical role in boosting the economic and environmental features of the whole process. A novel bionic flow-induced peristaltic reactor with a high conversion rate is constructed to realize efficient biofuel production from high-concentration high-viscosity fluids. It is experimentally verified through biodiesel production from soybean oil. Experimental results show that the conversion efficiency is up to 89.9% at 10 s in the peristaltic reactor, which is 38.4% higher than that in the rigid tube reactor. Furthermore, a three-dimensional peristaltic model is conducted to understand the mechanism of heat and mass transfer enhancement. The simulation results show that an increase in peristaltic amplitude strengthens the mixing of the bionic peristaltic reactor by 92.5-100.8%. The temperature distribution in the bionic peristaltic reactor is more uniform than in the traditional rigid tube reactor. The results demonstrate that the conversion rate of soybean oil in the bionic flow-induced peristaltic reactor is 528.82% min-1, which is 17-60 times higher than other intensified reactors operating in either continuous or batch modes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用新型仿生流动诱导蠕动反应器强化生物燃料生产——以生物柴油生产为例
生物燃料生产过程的集约化可以在提高整个过程的经济性和环保性方面发挥关键作用。为实现高浓度高粘度流体高效生产生物燃料,构建了一种新型的高转化率仿生流动诱导蠕动反应器。并通过大豆油制备生物柴油进行了实验验证。实验结果表明,在10 s时,蠕动反应器的转化效率可达89.9%,比刚性管反应器提高38.4%。此外,还建立了三维蠕动模型,以了解传热传质强化的机理。仿真结果表明,随着蠕动幅度的增大,仿生蠕动反应器的混合强度提高了92.5 ~ 100.8%。与传统的刚性管反应器相比,仿生蠕动反应器内的温度分布更加均匀。结果表明:在仿生流动诱导蠕动反应器中,豆油的转化率为528.82% min-1,是其他连续或间歇强化反应器的17-60倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.10
自引率
1.50%
发文量
15
审稿时长
8 weeks
期刊介绍: Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.
期刊最新文献
Editorial Board Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation A critical review of multiple alternative pathways for the production of a high-value bioproduct from sugarcane mill byproducts: the case of adipic acid Towards nationwide implementation of 40% biodiesel blend fuel in Indonesia: a comprehensive road test and laboratory evaluation Nanomaterials and their role in advancing biodiesel feedstock production: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1