V2X Communications for Maneuver Coordination in Connected Automated Driving: Message Generation Rules

IF 5.8 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Vehicular Technology Magazine Pub Date : 2023-09-01 DOI:10.1109/MVT.2023.3284562
Rafael Molina-Masegosa, S. Avedisov, M. Sepulcre, Y. Farid, J. Gozálvez, O. Altintas
{"title":"V2X Communications for Maneuver Coordination in Connected Automated Driving: Message Generation Rules","authors":"Rafael Molina-Masegosa, S. Avedisov, M. Sepulcre, Y. Farid, J. Gozálvez, O. Altintas","doi":"10.1109/MVT.2023.3284562","DOIUrl":null,"url":null,"abstract":"Connected automated vehicles (CAVs) can use vehicle-to-everything (V2X) communications to exchange their driving intentions and coordinate their maneuvers. Message generation rules are necessary to decide when and how maneuver coordination messages (MCMs) should be generated. The design of these generation rules must consider the critical nature of maneuver coordination and the limited bandwidth available for V2X communications. This study proposes the first two sets of V2X message generation rules for maneuver coordination between CAVs. The Risk proposal increases the rate at which vehicles generate MCMs when vehicles detect a potential safety risk. With the Tracking Trajectories proposal, vehicles generate a new maneuver coordination message when they significantly modify their planned trajectory. For both proposals, the messages include the planned and possible desired trajectories of the ego vehicle. The evaluation shows that the proposed generation rules efficiently support maneuver coordination and offer a balance between more frequent updates of the driving intentions of CAVs and lower coordination time and better control of the V2X communications channel load. This study also reveals that congestion control protocols can significantly impact maneuver coordination.","PeriodicalId":55004,"journal":{"name":"IEEE Vehicular Technology Magazine","volume":"18 1","pages":"91-100"},"PeriodicalIF":5.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Vehicular Technology Magazine","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MVT.2023.3284562","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Connected automated vehicles (CAVs) can use vehicle-to-everything (V2X) communications to exchange their driving intentions and coordinate their maneuvers. Message generation rules are necessary to decide when and how maneuver coordination messages (MCMs) should be generated. The design of these generation rules must consider the critical nature of maneuver coordination and the limited bandwidth available for V2X communications. This study proposes the first two sets of V2X message generation rules for maneuver coordination between CAVs. The Risk proposal increases the rate at which vehicles generate MCMs when vehicles detect a potential safety risk. With the Tracking Trajectories proposal, vehicles generate a new maneuver coordination message when they significantly modify their planned trajectory. For both proposals, the messages include the planned and possible desired trajectories of the ego vehicle. The evaluation shows that the proposed generation rules efficiently support maneuver coordination and offer a balance between more frequent updates of the driving intentions of CAVs and lower coordination time and better control of the V2X communications channel load. This study also reveals that congestion control protocols can significantly impact maneuver coordination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
V2X通信在互联自动驾驶中的机动协调:消息生成规则
联网自动化车辆(CAV)可以使用车辆对一切(V2X)通信来交换他们的驾驶意图并协调他们的机动。信息生成规则对于决定何时以及如何生成机动协调信息是必要的。这些生成规则的设计必须考虑机动协调的关键性质和V2X通信可用的有限带宽。本研究提出了前两组用于CAV之间机动协调的V2X消息生成规则。当车辆检测到潜在安全风险时,风险提案提高了车辆产生MCM的速度。根据“跟踪轨迹”方案,当车辆显著修改其计划轨迹时,会生成新的机动协调信息。对于这两个提议,信息包括自我飞行器的计划和可能的期望轨迹。评估表明,所提出的生成规则有效地支持了机动协调,并在更频繁地更新CAV的驾驶意图与更低的协调时间和更好地控制V2X通信信道负载之间提供了平衡。这项研究还表明,拥堵控制协议可以显著影响机动协调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Vehicular Technology Magazine
IEEE Vehicular Technology Magazine ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
14.10
自引率
1.20%
发文量
66
审稿时长
>12 weeks
期刊介绍: IEEE Vehicular Technology Magazine is a premier publication that features peer-reviewed articles showcasing advancements in areas of interest to the IEEE Vehicular Technology Society. Our scope encompasses theoretical, experimental, application, and operational aspects of electrical and electronic engineering relevant to motor vehicles and associated land transportation infrastructure. This includes technologies for terrestrial mobile vehicular services, components, systems, and auxiliary functions within motor vehicles, as well as components and systems used in both automated and non-automated facets of ground transport technology. The magazine focuses on intra-vehicular components, systems, and applications, offering tutorials, surveys, coverage of emerging technology, and serving as a platform for communication between the IEEE VTS governing body and its membership. Join us in exploring the latest developments in vehicular technology.
期刊最新文献
Mobile Terahertz Communication and Sensing systems: A Future Look On Exploiting User Equipment Relaying Capabilities in Beyond 5G Networks: Opportunities, Challenges, and Road Map Tackling Satellite Mobility in LEO-Based Non-Terrestrial Networks Federated Multiagent Deep Reinforcement Learning for Intelligent IoT Wireless Communications: Overview and Challenges Upcoming VTS Conferences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1