Theoretical study on organic photovoltaic heterojunction FTAZ/IDCIC

IF 1.2 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Chinese Journal of Chemical Physics Pub Date : 2023-04-01 DOI:10.1063/1674-0068/cjcp2109160
Bingwang Yang, Cairong Zhang, Yu Wang, Mei-ling Zhang, Zi-Jiang Liu, Youzhi Wu, Hongshan Chen
{"title":"Theoretical study on organic photovoltaic heterojunction FTAZ/IDCIC","authors":"Bingwang Yang, Cairong Zhang, Yu Wang, Mei-ling Zhang, Zi-Jiang Liu, Youzhi Wu, Hongshan Chen","doi":"10.1063/1674-0068/cjcp2109160","DOIUrl":null,"url":null,"abstract":"Understanding organic photovoltaic (OPV) work principles and the materials’ optoelectronic properties is fundamental for developing novel heterojunction materials with the aim of improving power conversion efficiency (PCE) of organic solar cells. Here, in order to understand the PCE performance (>13%) of OPV device composed of the non-fullerene acceptor fusing naphtho[1,2-b:5,6-b′]dithiophene with two thieno[3,2-b]thiophene (IDCIC) and the polymer donor fluorobenzotriazole (FTAZ), with the aid of extensive quantum chemistry calculations, we investigated the geometries, molecular orbitals, excitations, electrostatic potentials, transferred charges and charge transfer distances of FTAZ, IDCIC and their complexes with face-on configurations, which was constructed as heterojunction interface model. The results indicate that, the prominent OPV performance of FTAZ:IDCIC heterojunction is caused by co-planarity between the donor and acceptor fragments in IDCIC, the the charge transfer (CT) and hybrid excitations of FTAZ and IDCIC, the complementary optical absorptions in visible region, and the large electrostatic potential difference between FTAZ and IDCIC. The electronic structures and excitations of FTAZ/IDCIC complexes suggest that exciton dissociation can fulfill through the decay of local excitation exciton in acceptor by means of hole transfer, which is quite different from the OPVs based on fullerenes acceptor. The rates of exciton dissociation, charge recombination and CT processes, which were evaluated by Marcus theory, support the efficient exciton dissociation that is also responsible for good photovoltaic performance.","PeriodicalId":10036,"journal":{"name":"Chinese Journal of Chemical Physics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/1674-0068/cjcp2109160","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Understanding organic photovoltaic (OPV) work principles and the materials’ optoelectronic properties is fundamental for developing novel heterojunction materials with the aim of improving power conversion efficiency (PCE) of organic solar cells. Here, in order to understand the PCE performance (>13%) of OPV device composed of the non-fullerene acceptor fusing naphtho[1,2-b:5,6-b′]dithiophene with two thieno[3,2-b]thiophene (IDCIC) and the polymer donor fluorobenzotriazole (FTAZ), with the aid of extensive quantum chemistry calculations, we investigated the geometries, molecular orbitals, excitations, electrostatic potentials, transferred charges and charge transfer distances of FTAZ, IDCIC and their complexes with face-on configurations, which was constructed as heterojunction interface model. The results indicate that, the prominent OPV performance of FTAZ:IDCIC heterojunction is caused by co-planarity between the donor and acceptor fragments in IDCIC, the the charge transfer (CT) and hybrid excitations of FTAZ and IDCIC, the complementary optical absorptions in visible region, and the large electrostatic potential difference between FTAZ and IDCIC. The electronic structures and excitations of FTAZ/IDCIC complexes suggest that exciton dissociation can fulfill through the decay of local excitation exciton in acceptor by means of hole transfer, which is quite different from the OPVs based on fullerenes acceptor. The rates of exciton dissociation, charge recombination and CT processes, which were evaluated by Marcus theory, support the efficient exciton dissociation that is also responsible for good photovoltaic performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机光伏异质结FTAZ/IDCIC的理论研究
了解有机光伏(OPV)的工作原理和材料的光电特性是开发新型异质结材料以提高有机太阳能电池的功率转换效率的基础。为了了解由非富勒烯受体融合萘并[1,2-b:5,6-b′]二噻吩与两个噻吩并[3,2-b]噻吩(IDCIC)和聚合物供体氟苯并三唑(FTAZ)组成的OPV器件的PCE性能(>13%),我们借助于广泛的量子化学计算,FTAZ、IDCIC及其具有面上构型的配合物的转移电荷和电荷转移距离,构建了异质结界面模型。结果表明,FTAZ:IDCIC异质结突出的OPV性能是由IDCIC中供体和受体片段之间的共平面性、FTAZ和IDCIC的电荷转移(CT)和混合激发、可见光区域的互补光学吸收以及FTAZ与IDCIC之间的大静电电势差引起的。FTAZ/IDCIC配合物的电子结构和激发表明,激子离解可以通过空穴转移的方式通过受体中局部激发激子的衰变来实现,这与基于富勒烯受体的OPV截然不同。Marcus理论评估的激子离解率、电荷复合率和CT过程支持有效的激子离解,这也是良好光伏性能的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Chemical Physics
Chinese Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
1.90
自引率
10.00%
发文量
2763
审稿时长
3 months
期刊介绍: Chinese Journal of Chemical Physics (CJCP) aims to bridge atomic and molecular level research in broad scope for disciplines in chemistry, physics, material science and life sciences, including the following: Theoretical Methods, Algorithms, Statistical and Quantum Chemistry Gas Phase Dynamics and Structure: Spectroscopy, Molecular Interactions, Scattering, Photochemistry Condensed Phase Dynamics, Structure, and Thermodynamics: Spectroscopy, Reactions, and Relaxation Processes Surfaces, Interfaces, Single Molecules, Materials and Nanosciences Polymers, Biopolymers, and Complex Systems Other related topics
期刊最新文献
Photothermal catalytic selective oxidation of isobutane to methacrylic acid over keggin-type heteropolyacid Chinese Abstracts Author Correction to “Mesoscale Simulation of Vesiculation of Lipid Droplets” Energy transfer dynamics between carbon quantum dots and molybdenum disulfide revealed by transient absorption spectroscopy Photoluminescence enhancement of aluminum ion intercalated MoS2 quantum dots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1