Systematic literature review and mapping of the prediction of pile capacities

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-04-05 DOI:10.28927/sr.2023.011922
Sofia Carvalho, M. Sales, André Cavalcante
{"title":"Systematic literature review and mapping of the prediction of pile capacities","authors":"Sofia Carvalho, M. Sales, André Cavalcante","doi":"10.28927/sr.2023.011922","DOIUrl":null,"url":null,"abstract":"Predicting the pile’s load capacity is one of the first steps of foundation engineering design. In geotechnical engineering, there are different ways of predicting soil resistance, which is one of the main parameters. The pile load test is the most accurate method to predict bearing capacity in foundations, as it is the most accurate due to the nature of the experiment. On the other hand, it is an expensive test, and time-consuming. Over the years, semi-empirical methods have played an important role in this matter. Initially, many proposed methods were based on linear regressions. Those are still mainly used, but recently the use of a new method has gained popularity in Geotechnics: Artificial Neural Network. Over the past few decades, Machine Learning has proven to be a very promising technique in the field, due to the complexity and variability of material and properties of soils. Considering that, this work has reviewed and mapped the literature of the main papers published in journals over the last decades. The aim of this paper was to determine the main methods used and lacks that can be fulfilled in future research. Among the results, the bibliometric and protocol aiming questions such as types of piles, tests, statistic methods, and characteristics inherent to the data, indicated a lack of works in helical piles and instrumented pile load tests results, dividing point and shaft resistance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2023.011922","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Predicting the pile’s load capacity is one of the first steps of foundation engineering design. In geotechnical engineering, there are different ways of predicting soil resistance, which is one of the main parameters. The pile load test is the most accurate method to predict bearing capacity in foundations, as it is the most accurate due to the nature of the experiment. On the other hand, it is an expensive test, and time-consuming. Over the years, semi-empirical methods have played an important role in this matter. Initially, many proposed methods were based on linear regressions. Those are still mainly used, but recently the use of a new method has gained popularity in Geotechnics: Artificial Neural Network. Over the past few decades, Machine Learning has proven to be a very promising technique in the field, due to the complexity and variability of material and properties of soils. Considering that, this work has reviewed and mapped the literature of the main papers published in journals over the last decades. The aim of this paper was to determine the main methods used and lacks that can be fulfilled in future research. Among the results, the bibliometric and protocol aiming questions such as types of piles, tests, statistic methods, and characteristics inherent to the data, indicated a lack of works in helical piles and instrumented pile load tests results, dividing point and shaft resistance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
桩承载力预测的系统文献综述和绘图
预测桩的承载力是基础工程设计的首要步骤之一。在岩土工程中,预测土壤阻力有不同的方法,土壤阻力是主要参数之一。桩荷载试验是预测地基承载力最准确的方法,因为由于试验的性质,它是最准确的。另一方面,这是一项昂贵且耗时的测试。多年来,半经验方法在这方面发挥了重要作用。最初,许多提出的方法都是基于线性回归的。这些仍然是主要使用的,但最近一种新方法的使用在岩土工程中越来越受欢迎:人工神经网络。在过去的几十年里,由于土壤材料和特性的复杂性和可变性,机器学习已被证明是该领域一种非常有前途的技术。考虑到这一点,这项工作回顾并绘制了过去几十年在期刊上发表的主要论文的文献。本文的目的是确定在未来的研究中使用的主要方法和可以弥补的不足。在这些结果中,针对诸如桩的类型、测试、统计方法和数据固有特性等问题的文献计量和方案表明,在螺旋桩和仪器桩荷载测试结果、分界点和轴阻力方面缺乏工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
The change process questionnaire (CPQ): A psychometric validation. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1