Biotechnological production of platform chemicals through anode assisted fermentation by using an artificial biofilm of S. oneidensis

Biofilms Pub Date : 2020-07-01 DOI:10.5194/biofilms9-158
Miriam Edel, J. Gescher
{"title":"Biotechnological production of platform chemicals through anode assisted fermentation by using an artificial biofilm of S. oneidensis","authors":"Miriam Edel, J. Gescher","doi":"10.5194/biofilms9-158","DOIUrl":null,"url":null,"abstract":"<p>A shift from petrochemical processes to a bio-based economy is inevitable to establish a sustainable industry. Bioelectrochemical systems (BESs) are a future technology for the environment-friendly production of platform chemicals. In BESs exoelectrogenic bacteria such as <em>Shewanella oneidensis</em> can directly transfer respiratory electrons to the anode, which serves as a non-depletable electron acceptor. So far, the main limiting factor in BESs is the achievable current density which correlates to some extend with the density, thickness and metabolic activity of anode biofilms composed of exoelectrogenic microorganisms. This is especially true for<em> S.&#160;oneidensis</em> as the organism forms rather thin biofilms under anoxic conditions on anode surfaces.</p>\n<p>In order to enhance the organisms&#8217; biofilm formation capabilities Bursac <em>et al</em>. deleted the <em>&#955;-</em>prophage from the genome. The deletion of the <em>&#955;-</em>prophage led to a 2.3-fold increased cell number on the anode ongoing with a 1.34-fold increased mean current density (Bursac <em>et al</em>., 2017). Furthermore, we just recently discovered that exogenous riboflavin enhances biofilm formation by the upregulation of the Ornithine-decarboxylase <em>speC</em>. This is probably based on a quorum sensing effect of riboflavin. Taken together the upregulation of <em>speC</em> ongoing with the deletion of the <em>&#955;-</em>prophage leads to a 4-fold increase in current density ongoing with a 6.1-fold increased biofilm formation on the anode.</p>\n<p>However, to ensure an optimal performance of the biofilm in BESs, biofilm thickness itself is not sufficient. The biofilm also needs to be conductive. Our aim is to establish the Spytag-/Spycatcher-tool to synthetically steer biofilm conductivity. Spytag and Spycatcher are two protein residues from the fibronectin binding protein of <em>Streptococcus pyogenes</em> (Spy). These two protein residues form a spontaneous isopeptide bond under a variety of temperatures, pH values and buffers (Zakeri et al., 2012). By coupling Spytag and Spyctacher to different outer membrane <em>c</em>-type cytochromes of <em>S. oneidensis</em> the cells are covalently bound to each other while the biofilm remains conductive. In a first application the production of acetoin as one of the top 30 platform chemicals world-wide is desired (US Department of Energy, 2004).</p>\n<p>In order to render <em>S. oneidensis</em> producing acetoin instead of the native end product acetate, Bursac <em>et al</em>. deleted the key genes for acetate production and introduced the acteoin production pathway (Bursac <em>et al</em>., 2017). To broaden the substrate spectrum of <em>S. oneidensis</em>&#160;further genes for glucose metabolism were introduced. Through a long term adaption, the glucose degradation, the biofilm formation abilities and the bioelectrochemical performance were significantly enhanced.</p>\n<p>Merging all genetic optimizations into one production strain will enable us to produce acetoin from glucose as a platform chemical with high space-time yields. This will give rise to a production process that is competitive with existing oxic process routines without being dependent on expensive aeration.</p>\n<p>References:</p>\n<p>Bursac, T., Gralnick, J.A.,Gescher, J. (2017) Acetoin production via unbalanced fermentation in <em>Shewanella oneidensis</em>. Biotechnol Bioeng 114: 1283&#8211;1289.</p>\n<p>Zakeri, B., Fierer, J.O., Celik, E., Chittock, E.C., Schwarz-Linek, U., Moy, V.T., Howarth, M. (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109: E690.</p>","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/biofilms9-158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A shift from petrochemical processes to a bio-based economy is inevitable to establish a sustainable industry. Bioelectrochemical systems (BESs) are a future technology for the environment-friendly production of platform chemicals. In BESs exoelectrogenic bacteria such as Shewanella oneidensis can directly transfer respiratory electrons to the anode, which serves as a non-depletable electron acceptor. So far, the main limiting factor in BESs is the achievable current density which correlates to some extend with the density, thickness and metabolic activity of anode biofilms composed of exoelectrogenic microorganisms. This is especially true for S. oneidensis as the organism forms rather thin biofilms under anoxic conditions on anode surfaces.

In order to enhance the organisms’ biofilm formation capabilities Bursac et al. deleted the λ-prophage from the genome. The deletion of the λ-prophage led to a 2.3-fold increased cell number on the anode ongoing with a 1.34-fold increased mean current density (Bursac et al., 2017). Furthermore, we just recently discovered that exogenous riboflavin enhances biofilm formation by the upregulation of the Ornithine-decarboxylase speC. This is probably based on a quorum sensing effect of riboflavin. Taken together the upregulation of speC ongoing with the deletion of the λ-prophage leads to a 4-fold increase in current density ongoing with a 6.1-fold increased biofilm formation on the anode.

However, to ensure an optimal performance of the biofilm in BESs, biofilm thickness itself is not sufficient. The biofilm also needs to be conductive. Our aim is to establish the Spytag-/Spycatcher-tool to synthetically steer biofilm conductivity. Spytag and Spycatcher are two protein residues from the fibronectin binding protein of Streptococcus pyogenes (Spy). These two protein residues form a spontaneous isopeptide bond under a variety of temperatures, pH values and buffers (Zakeri et al., 2012). By coupling Spytag and Spyctacher to different outer membrane c-type cytochromes of S. oneidensis the cells are covalently bound to each other while the biofilm remains conductive. In a first application the production of acetoin as one of the top 30 platform chemicals world-wide is desired (US Department of Energy, 2004).

In order to render S. oneidensis producing acetoin instead of the native end product acetate, Bursac et al. deleted the key genes for acetate production and introduced the acteoin production pathway (Bursac et al., 2017). To broaden the substrate spectrum of S. oneidensis further genes for glucose metabolism were introduced. Through a long term adaption, the glucose degradation, the biofilm formation abilities and the bioelectrochemical performance were significantly enhanced.

Merging all genetic optimizations into one production strain will enable us to produce acetoin from glucose as a platform chemical with high space-time yields. This will give rise to a production process that is competitive with existing oxic process routines without being dependent on expensive aeration.

References:

Bursac, T., Gralnick, J.A.,Gescher, J. (2017) Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol Bioeng 114: 1283–1289.

Zakeri, B., Fierer, J.O., Celik, E., Chittock, E.C., Schwarz-Linek, U., Moy, V.T., Howarth, M. (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109: E690.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用S.oneidensis人工生物膜阳极辅助发酵生物技术生产平台化学品
要建立可持续发展的产业,从石化过程转向生物经济是不可避免的。生物电化学系统(BESs)是一种未来的环境友好型平台化学品生产技术。在BESs中,产电细菌如希瓦氏菌可以直接将呼吸电子转移到阳极,阳极作为一个不可耗尽的电子受体。到目前为止,BESs的主要限制因素是可达到的电流密度,这在一定程度上与由产电微生物组成的阳极生物膜的密度、厚度和代谢活性有关。这对于S. oneidensis尤其如此,因为生物体在缺氧条件下在阳极表面形成相当薄的生物膜。为了增强生物体’Bursac等从基因组中删除了λ-噬菌体。-原噬菌体的缺失导致阳极上的细胞数量增加2.3倍,平均电流密度增加1.34倍(Bursac等人,2017)。此外,我们最近刚刚发现外源性核黄素通过上调鸟氨酸脱羧酶speC来促进生物膜的形成。这可能是基于核黄素的群体感应效应。在缺失λ-前噬菌体的同时,speC持续的上调导致电流密度增加4倍,阳极上生物膜的形成增加6.1倍。然而,为了保证生物膜在BESs中的最佳性能,生物膜厚度本身是不够的。生物膜还需要具有导电性。我们的目标是建立Spytag-/ spycatcher -工具来综合控制生物膜的导电性。Spytag和Spycatcher是化脓性链球菌(Streptococcus pyogenes, Spy)纤维连接蛋白结合蛋白的两个蛋白残基。这两个蛋白残基在各种温度、pH值和缓冲液下形成自发的异肽键(Zakeri et al., 2012)。通过将Spytag和Spyctacher偶联到不同的外膜c型细胞色素上,使细胞相互共价结合,而生物膜保持导电性。在第一次应用中,希望生产乙托因作为全球前30大平台化学品之一(美国能源部,2004年)。为了使S. oneidensis产生乙酰胆碱而不是天然的最终产物醋酸盐,Bursac等人删除了醋酸盐产生的关键基因,引入了乙酰胆碱产生途径(Bursac et al., 2017)。为了拓宽S. oneidensis的底物谱,进一步引入了葡萄糖代谢基因。经过长期的适应,葡萄糖降解能力、生物膜形成能力和生物电化学性能显著提高。将所有的基因优化合并到一个生产菌株中,将使我们能够从葡萄糖中生产丙酮,作为具有高时空产量的平台化学品。这将产生一种生产工艺,与现有的氧化工艺程序竞争,而不依赖于昂贵的曝气。参考文献:Bursac, T., Gralnick, j.a.,Gescher, J.(2017)希瓦氏菌不平衡发酵产乙酰托因。生物工程114:1283–1289。Zakeri, B., Fierer, j.o., Celik, E., Chittock, e.c., Schwarz-Linek, U., Moy, v.t., Howarth, M.(2012)通过工程细菌粘附素与蛋白质形成快速共价键的肽标签。中国科学:自然科学版,2009(5):391 - 391。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Global analyses imply that Stenotrophomonas maltophilia biofilms are phenotypically highly diverse despite a common transcriptome profile BiofilmQ, a software tool for quantiative image analysis of microbial biofilm communities Monitoring and quantification of bioelectrochemical biofilms by means of OCT in novel and customized reactor-setups Biofilm and productivity-associated community changes in serial-transfer experiments in heterogeneous liquid microcosms Heterogeneities in biofilms from clinical isolates under flow conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1