Functional roles of coral reef primary producers examined with stable isotopes

IF 1.8 4区 环境科学与生态学 Q2 FISHERIES Marine and Freshwater Research Pub Date : 2023-05-03 DOI:10.1071/mf22103
Sara Godinez-Espinosa, V. Raoult, T. M. Smith, T. Gaston, J. Williamson
{"title":"Functional roles of coral reef primary producers examined with stable isotopes","authors":"Sara Godinez-Espinosa, V. Raoult, T. M. Smith, T. Gaston, J. Williamson","doi":"10.1071/mf22103","DOIUrl":null,"url":null,"abstract":"Context Primary production on coral reefs varies under changing conditions such as light and nutrient availability. This variation causes changes in basal stable isotopes as photosynthetic and nutrient pathways change. Aims This study provides a preliminary baseline of nitrogen (δ15N) and carbon (δ13C) stable isotope profiles in Symbiodinium and macroalgae at a spatial scale and along a depth gradient around an island. Methods Coral fragments and macroalgae were collected at depths from the surface to 26 m. δ15N and δ13C stable isotope values were assessed for Symbiodinium relative to cell density per surface area. Key results δ15N values showed a uniform nutrient profile across primary producers. However, chlorophyll-a and Symbiodinium density from Montipora stellata had higher concentrations on the southern side of the island. δ15N values of Symbiodinium from Stylophora pistillata and macroalgae did not change with depth. Depth was associated with a significant decrease in Symbiodinium density, and δ13C values in macroalgae. Conclusions We attribute these findings to Symbiodinium from S. pistillata as depth increases, decreasing cell density but maintaining chlorophyll-a concentration to satisfy the coral-host nutrient requirements. Implications This study sets the scene for future, more comprehensive research on detecting carbon and nitrogen stable isotope values on primary producers in coral reefs.","PeriodicalId":18209,"journal":{"name":"Marine and Freshwater Research","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine and Freshwater Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/mf22103","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Context Primary production on coral reefs varies under changing conditions such as light and nutrient availability. This variation causes changes in basal stable isotopes as photosynthetic and nutrient pathways change. Aims This study provides a preliminary baseline of nitrogen (δ15N) and carbon (δ13C) stable isotope profiles in Symbiodinium and macroalgae at a spatial scale and along a depth gradient around an island. Methods Coral fragments and macroalgae were collected at depths from the surface to 26 m. δ15N and δ13C stable isotope values were assessed for Symbiodinium relative to cell density per surface area. Key results δ15N values showed a uniform nutrient profile across primary producers. However, chlorophyll-a and Symbiodinium density from Montipora stellata had higher concentrations on the southern side of the island. δ15N values of Symbiodinium from Stylophora pistillata and macroalgae did not change with depth. Depth was associated with a significant decrease in Symbiodinium density, and δ13C values in macroalgae. Conclusions We attribute these findings to Symbiodinium from S. pistillata as depth increases, decreasing cell density but maintaining chlorophyll-a concentration to satisfy the coral-host nutrient requirements. Implications This study sets the scene for future, more comprehensive research on detecting carbon and nitrogen stable isotope values on primary producers in coral reefs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用稳定同位素研究珊瑚礁初级生产者的功能作用
珊瑚礁的初级生产随着光照和养分供应等条件的变化而变化。随着光合作用和营养途径的改变,这种变异引起了基础稳定同位素的变化。本研究提供了在空间尺度和岛屿周围深度梯度上共生菌和大型藻类中氮(δ15N)和碳(δ13C)稳定同位素剖面的初步基线。方法采集表层至26 m深度的珊瑚碎片和大型藻类,测定共生菌的δ15N和δ13C稳定同位素值与单位表面积细胞密度的关系。主要结果:δ15N值在初级生产者中表现出均匀的养分分布。然而,在岛的南侧,蒙提波拉的叶绿素-a和共生菌密度较高。柱头藻和大型藻共生菌的δ15N值不随深度变化。深度与共生菌密度和大型藻类δ13C值显著降低有关。结论雌柱头孢的共生菌随着深度的增加,细胞密度降低,但维持叶绿素-a浓度以满足珊瑚-宿主的营养需求。本研究为未来更全面地研究珊瑚礁初级生产者的碳氮稳定同位素值奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine and Freshwater Research
Marine and Freshwater Research 环境科学-海洋学
CiteScore
4.60
自引率
5.60%
发文量
76
审稿时长
3.8 months
期刊介绍: Marine and Freshwater Research is an international and interdisciplinary journal publishing contributions on all aquatic environments. The journal’s content addresses broad conceptual questions and investigations about the ecology and management of aquatic environments. Environments range from groundwaters, wetlands and streams to estuaries, rocky shores, reefs and the open ocean. Subject areas include, but are not limited to: aquatic ecosystem processes, such as nutrient cycling; biology; ecology; biogeochemistry; biogeography and phylogeography; hydrology; limnology; oceanography; toxicology; conservation and management; and ecosystem services. Contributions that are interdisciplinary and of wide interest and consider the social-ecological and institutional issues associated with managing marine and freshwater ecosystems are welcomed. Marine and Freshwater Research is a valuable resource for researchers in industry and academia, resource managers, environmental consultants, students and amateurs who are interested in any aspect of the aquatic sciences. Marine and Freshwater Research is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
期刊最新文献
Are tuna always hungry? A deep dive into stomach-fullness measures in the western and central Pacific Ocean The implications of brief floodplain inundation for local and landscape-scale ecosystem function in an intermittent Australian river A comprehensive review of South Australia’s Great Artesian Basin spring and discharge wetlands biota Changes in the fish assemblages along the Busselton Jetty, and a comparison with natural habitats The role of environmental factors on beta diversity of periphytic algae in a tropical reservoir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1